{"title":"TRAF6 signaling in T cells is crucial for the pathogenicity of experimental autoimmune encephalomyelitis.","authors":"Naganori Kamiyama, Benjawan Saechue, Nozomi Sachi, Astri Dewayani, Thanyakorn Chalalai, Sotaro Ozaka, Shimpei Ariki, Yasuhiro Soga, Yomei Kagoshima, Supanuch Ekronarongchai, Shinya Hidano, Takashi Kobayashi","doi":"10.1093/intimm/dxad055","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an incurable chronic autoimmune disease affecting the central nervous system (CNS). Although IL-17-producing helper T (Th17) cells are thought to be one of the exacerbating factors in MS, the underlying pathogenic mechanism is incompletely understood. TNF receptor-associated factor 6 (TRAF6) deficient T cells exhibited enhanced Th17 cell differentiation, however, the physiological relevance of TRAF6 in T cells remains unknown. Here, we induced experimental autoimmune encephalomyelitis (EAE) in T cell-specific TRAF6 deficient (TRAF6ΔT) mice to investigate the role of TRAF6 in T cells during the course of MS using an EAE model. Although Th17 cell differentiation was enhanced in TRAF6ΔT mice, mutant mice were resistant to EAE. In contrast, TRAF6 loss did not affect regulatory T-cell differentiation. Consistent with the severity of EAE, a small number of infiltrating T cells and a small area of demyelination were observed in the CNS of TRAF6ΔT mice. Moreover, myelin oligodendrocyte glycoprotein-induced IL-17 production in TRAF6-deficient T cells was significantly suppressed. We further confirmed lower levels of CD69 and granulocyte-macrophage colony-stimulating factor in Th17 cells of TRAF6ΔT mice than in wild-type mice. In contrast, the expression of IL-10 and cytotoxic T-lymphocyte-associated protein 4 in T cells was significantly elevated in the absence of TRAF6 because of enhanced T-cell receptor signaling. Collectively, TRAF6 signaling in T cells contributes to the pathogenesis of EAE by regulating the pathogenicity and autoantigen reactivity of Th17 cells.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"241-256"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxad055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is an incurable chronic autoimmune disease affecting the central nervous system (CNS). Although IL-17-producing helper T (Th17) cells are thought to be one of the exacerbating factors in MS, the underlying pathogenic mechanism is incompletely understood. TNF receptor-associated factor 6 (TRAF6) deficient T cells exhibited enhanced Th17 cell differentiation, however, the physiological relevance of TRAF6 in T cells remains unknown. Here, we induced experimental autoimmune encephalomyelitis (EAE) in T cell-specific TRAF6 deficient (TRAF6ΔT) mice to investigate the role of TRAF6 in T cells during the course of MS using an EAE model. Although Th17 cell differentiation was enhanced in TRAF6ΔT mice, mutant mice were resistant to EAE. In contrast, TRAF6 loss did not affect regulatory T-cell differentiation. Consistent with the severity of EAE, a small number of infiltrating T cells and a small area of demyelination were observed in the CNS of TRAF6ΔT mice. Moreover, myelin oligodendrocyte glycoprotein-induced IL-17 production in TRAF6-deficient T cells was significantly suppressed. We further confirmed lower levels of CD69 and granulocyte-macrophage colony-stimulating factor in Th17 cells of TRAF6ΔT mice than in wild-type mice. In contrast, the expression of IL-10 and cytotoxic T-lymphocyte-associated protein 4 in T cells was significantly elevated in the absence of TRAF6 because of enhanced T-cell receptor signaling. Collectively, TRAF6 signaling in T cells contributes to the pathogenesis of EAE by regulating the pathogenicity and autoantigen reactivity of Th17 cells.
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.