Anti-cancer activity and cellular uptake of 7,3',4'- and 7,8,4'-trihydroxyisoflavone in HepG2 cells under hypoxic conditions.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2024-12-01 Epub Date: 2023-12-28 DOI:10.1080/14756366.2023.2288806
Wen-Sheng Tzeng, Wei-Lin Teng, Pao-Hsien Huang, Feng-Lin Yen, Yow-Ling Shiue
{"title":"Anti-cancer activity and cellular uptake of 7,3',4'- and 7,8,4'-trihydroxyisoflavone in HepG2 cells under hypoxic conditions.","authors":"Wen-Sheng Tzeng, Wei-Lin Teng, Pao-Hsien Huang, Feng-Lin Yen, Yow-Ling Shiue","doi":"10.1080/14756366.2023.2288806","DOIUrl":null,"url":null,"abstract":"<p><p>Transarterial chemoembolisation (TACE) is used for unresectable hepatocellular carcinoma (HCC) treatment, but TACE-induced hypoxia leads to poor prognosis. The anti-cancer effects of soybean isoflavones daidzein derivatives 7,3',4'-trihydroxyisoflavone (734THIF) and 7,8,4'-trihydroxyisoflavone (784THIF) were evaluated under hypoxic microenvironments. Molecular docking of these isomers with cyclooxygenase-2 (COX-2) and vascular endothelial growth factor receptor 2 (VEGFR2) was assessed. About 40 μM of 734THIF and 784THIF have the best effect on inhibiting the proliferation of HepG2 cells under hypoxic conditions. At a concentration of 40 μM, 784THIF significantly inhibits COX-2 expression in pre-hypoxia conditions compared to 734THIF, with an inhibition rate of 67.73%. Additionally, 40 μM 784THIF downregulates the expression of hypoxic, inflammatory, and metastatic-related proteins, regulates oxidative stress, and inhibits the expression of anti-apoptotic proteins. The uptake by HepG2 confirmed higher 784THIF level and slower degradation characteristics under post- or pre-hypoxic conditions. In conclusion, our results showed that 784THIF had better anti-cancer effects and cellular uptake than 734THIF.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2023.2288806","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transarterial chemoembolisation (TACE) is used for unresectable hepatocellular carcinoma (HCC) treatment, but TACE-induced hypoxia leads to poor prognosis. The anti-cancer effects of soybean isoflavones daidzein derivatives 7,3',4'-trihydroxyisoflavone (734THIF) and 7,8,4'-trihydroxyisoflavone (784THIF) were evaluated under hypoxic microenvironments. Molecular docking of these isomers with cyclooxygenase-2 (COX-2) and vascular endothelial growth factor receptor 2 (VEGFR2) was assessed. About 40 μM of 734THIF and 784THIF have the best effect on inhibiting the proliferation of HepG2 cells under hypoxic conditions. At a concentration of 40 μM, 784THIF significantly inhibits COX-2 expression in pre-hypoxia conditions compared to 734THIF, with an inhibition rate of 67.73%. Additionally, 40 μM 784THIF downregulates the expression of hypoxic, inflammatory, and metastatic-related proteins, regulates oxidative stress, and inhibits the expression of anti-apoptotic proteins. The uptake by HepG2 confirmed higher 784THIF level and slower degradation characteristics under post- or pre-hypoxic conditions. In conclusion, our results showed that 784THIF had better anti-cancer effects and cellular uptake than 734THIF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺氧条件下 7,3',4'- 和 7,8,4'- 三羟基异黄酮在 HepG2 细胞中的抗癌活性和细胞吸收。
经动脉化疗栓塞术(TACE)用于治疗无法切除的肝细胞癌(HCC),但 TACE 引起的缺氧会导致预后不良。研究人员评估了大豆异黄酮的衍生物 7,3',4'-三羟基异黄酮(734THIF)和 7,8,4'-三羟基异黄酮(784THIF)在缺氧微环境下的抗癌作用。评估了这些异构体与环氧化酶-2(COX-2)和血管内皮生长因子受体 2(VEGFR2)的分子对接。在缺氧条件下,约 40 μM 的 734THIF 和 784THIF 对 HepG2 细胞增殖的抑制效果最佳。与 734THIF 相比,浓度为 40 μM 时,784THIF 能显著抑制缺氧前条件下 COX-2 的表达,抑制率为 67.73%。此外,40 μM 784THIF 还能下调缺氧、炎症和转移相关蛋白的表达,调节氧化应激,抑制抗凋亡蛋白的表达。HepG2对784THIF的吸收证实,在缺氧后或缺氧前条件下,784THIF水平较高,降解速度较慢。总之,我们的研究结果表明,与 734THIF 相比,784THIF 具有更好的抗癌效果和细胞吸收能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
期刊最新文献
Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. Novel dual-targeting inhibitors of NSD2 and HDAC2 for the treatment of liver cancer: structure-based virtual screening, molecular dynamics simulation, and in vitro and in vivo biological activity evaluations. Searching for novel MDM2/MDMX dual inhibitors through a drug repurposing approach. Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1