首页 > 最新文献

Journal of Enzyme Inhibition and Medicinal Chemistry最新文献

英文 中文
Small molecules targeting the eubacterial β-sliding clamp discovered by combined in silico and in vitro screening approaches.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-03 DOI: 10.1080/14756366.2024.2440861
Alessia Caputo, Gian Marco Elisi, Elisabetta Levati, Giulia Barotti, Sara Sartini, Jerome Wagner, Dominique Y Burnouf, Simone Ottonello, Silvia Rivara, Barbara Montanini

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets. Particularly promising is the α-subunit/β-sliding clamp interaction, crucial for the replicative competence of bacterial DNA polymerase III holoenzyme. Through pharmacophore-based virtual screening, we identified 4,000 candidate small molecule inhibitors targeting the β-clamp binding pocket. Subsequently, these candidates underwent evaluation using the BRET assay in yeast cells. Following this, three hits and 28 analogues were validated via Protein Thermal Shift and competitive ELISA assays. Among them, thiazolo[4,5-d]-pyrimidinedione and benzanilide derivatives exhibited micromolar potency in displacing the β-clamp protein partner and inhibiting DNA replication. This screening campaign unveiled new chemical classes of α/β-clamp PPI disruptors capable of inhibiting DNA polymerase III activity, which lend themselves for further optimisation to improve their antibacterial efficacy.

{"title":"Small molecules targeting the eubacterial β-sliding clamp discovered by combined <i>in silico</i> and <i>in vitro</i> screening approaches.","authors":"Alessia Caputo, Gian Marco Elisi, Elisabetta Levati, Giulia Barotti, Sara Sartini, Jerome Wagner, Dominique Y Burnouf, Simone Ottonello, Silvia Rivara, Barbara Montanini","doi":"10.1080/14756366.2024.2440861","DOIUrl":"https://doi.org/10.1080/14756366.2024.2440861","url":null,"abstract":"<p><p>Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets. Particularly promising is the α-subunit/β-sliding clamp interaction, crucial for the replicative competence of bacterial DNA polymerase III holoenzyme. Through pharmacophore-based virtual screening, we identified 4,000 candidate small molecule inhibitors targeting the β-clamp binding pocket. Subsequently, these candidates underwent evaluation using the BRET assay in yeast cells. Following this, three hits and 28 analogues were validated via Protein Thermal Shift and competitive ELISA assays. Among them, thiazolo[4,5-<i>d</i>]-pyrimidinedione and benzanilide derivatives exhibited micromolar potency in displacing the β-clamp protein partner and inhibiting DNA replication. This screening campaign unveiled new chemical classes of α/β-clamp PPI disruptors capable of inhibiting DNA polymerase III activity, which lend themselves for further optimisation to improve their antibacterial efficacy.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2440861"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-01-03 DOI: 10.1080/14756366.2024.2442703
Nazar Trotsko, Agnieszka Głogowska, Barbara Kaproń, Katarzyna Kozieł, Ewa Augustynowicz-Kopeć, Agata Paneth

The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties in vitro. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H37Rv and two wild Mycobacterium tuberculosis (Mtb) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.

{"title":"The new thiazolidine-2,4-dione-based hybrids with promising antimycobacterial activity: design, synthesis, biological evaluation, and drug interaction analysis.","authors":"Nazar Trotsko, Agnieszka Głogowska, Barbara Kaproń, Katarzyna Kozieł, Ewa Augustynowicz-Kopeć, Agata Paneth","doi":"10.1080/14756366.2024.2442703","DOIUrl":"https://doi.org/10.1080/14756366.2024.2442703","url":null,"abstract":"<p><p>The ever-increasing drug-resistant tuberculosis (TB) has invigorated the focus on the discovery and development of novel therapeutic agents and treatment options. Thiazolidinone-based compounds have shown good antitubercular properties <i>in vitro</i>. Here, we report the design and synthesis of a number of new derivatives inspired by the structure of thiazolidine-2,4-dione (TZD). The TZD-based hybrids with the thiosemicarbazone or the pyridinecarbohydrazone moiety were synthesised and their antimycobacterial activity was investigated against the reference H<sub>37</sub>Rv and two wild <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) strains. In further studies, a two-drug interaction analysis was also performed for assessing their synergism with the current first-line drugs used for the treatment of TB. It was found that some of the compounds showed high antimycobacterial activity with MICs (0.078-0.283 µM) and a synergistic effect with isoniazid or rifampicin, thereby demonstrating their potential as a promising scaffold for the development of novel coadjuvants for the effective treatment of TB.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2442703"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2024-12-23 DOI: 10.1080/14756366.2024.2435365
Hyeonmin Lee, Hyunjae Park, Kiwoong Kwak, Chae-Eun Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang

β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.

{"title":"Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.","authors":"Hyeonmin Lee, Hyunjae Park, Kiwoong Kwak, Chae-Eun Lee, Jiwon Yun, Donghyun Lee, Jung Hun Lee, Sang Hee Lee, Lin-Woo Kang","doi":"10.1080/14756366.2024.2435365","DOIUrl":"https://doi.org/10.1080/14756366.2024.2435365","url":null,"abstract":"<p><p>β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2435365"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-cell bioluminescence resonance energy transfer (BRET)-based assay uncovers ceritinib and CA-074 as SARS-CoV-2 papain-like protease inhibitors. 基于细胞内生物发光共振能量转移(BRET)的检测发现 Ceritinib 和 CA-074 是 SARS-CoV-2 类木瓜蛋白酶抑制剂。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI: 10.1080/14756366.2024.2387417
Mei Li, Zhu-Chun Bei, Yongtian Yuan, Baogang Wang, Dongna Zhang, Likun Xu, Liangliang Zhao, Qin Xu, Yabin Song

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.

木瓜蛋白酶(Papain-like protease,PLpro)是一种极具吸引力的抗冠状病毒靶标。然而,现有 PLpro 检测方法的局限性和有效活性化合物的稀缺性阻碍了 PLpro 抑制剂的开发。我们开发了一种基于 BRET 的新型细胞内 PLpro 检测方法,并用它来评估和发现 SARS-CoV-2 PLpro 抑制剂。所开发的检测方法在检测细胞内 PLpro 活性降低方面表现出了极高的灵敏度,同时在抑制剂评估和高通量筛选方面也具有极高的可靠性和性能。利用这种检测方法,三种蛋白酶抑制剂被鉴定为新型 PLpro 抑制剂,它们在结构上与以前已知的抑制剂不同。随后进行的酶测定和基于分子对接的配体-蛋白质相互作用分析表明,塞瑞替尼可直接抑制PLpro,与PLpro中的底物结合口袋显示出高度的几何互补性,而CA-074甲酯则会发生细胞内水解,暴露出一个游离的羧羟基,该羧羟基对于与BL2槽中的G266发生氢键作用至关重要,从而导致PLpro受到抑制。
{"title":"In-cell bioluminescence resonance energy transfer (BRET)-based assay uncovers ceritinib and CA-074 as SARS-CoV-2 papain-like protease inhibitors.","authors":"Mei Li, Zhu-Chun Bei, Yongtian Yuan, Baogang Wang, Dongna Zhang, Likun Xu, Liangliang Zhao, Qin Xu, Yabin Song","doi":"10.1080/14756366.2024.2387417","DOIUrl":"10.1080/14756366.2024.2387417","url":null,"abstract":"<p><p>Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2387417"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of quinoxaline derivatives as ASK1 inhibitors. 作为 ASK1 抑制剂的喹喔啉衍生物的合成和生物学评价。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI: 10.1080/14756366.2024.2414382
Xiaorui Han, Pingping Lan, Qianfeng Chen, Hua Liu, Zhongwen Chen, Tiantian Wang, Zengtao Wang

Inhibiting apoptosis signal regulated kinase 1 (ASK1) is an attractive strategy for treating diseases such as non-alcoholic steatohepatitis and multiple sclerosis. Here, we report the discovery of a dibromo substituted quinoxaline fragment containing 26e as an effective small-molecule inhibitor of ASK1, with an IC50 value of 30.17 nM. In addition, the cell survival rate of 26e at different concentrations was greater than 80%, especially at 0.4 μM. Its cell survival rate was significantly higher than GS-4997, indicating its good safety in normal human liver LO2 cells. The Oil Red O staining experiment showed that 26e decreased the lipid droplets in a dose-dependent manner. Further biochemical analyses revealed that 26e could reduce the content of T-CHO, LDL, and TG in FFA-induced LO2 cells, and had the potential to treat non-alcoholic fatty disease. These findings provide a good choice for the future development of ASK1 inhibitors.

抑制凋亡信号调控激酶 1(ASK1)是治疗非酒精性脂肪性肝炎和多发性硬化症等疾病的一种有吸引力的策略。在此,我们报告发现了一种含有 26e 的二溴取代喹喔啉片段,它是一种有效的 ASK1 小分子抑制剂,IC50 值为 30.17 nM。此外,26e 在不同浓度下的细胞存活率均大于 80%,尤其是在 0.4 μM 时。其细胞存活率明显高于 GS-4997,表明其在正常人肝脏 LO2 细胞中具有良好的安全性。油红 O 染色实验表明,26e 能以剂量依赖的方式减少脂滴。进一步的生化分析表明,26e 能降低 FFA 诱导的 LO2 细胞中 T-CHO、LDL 和 TG 的含量,具有治疗非酒精性脂肪病的潜力。这些发现为今后开发 ASK1 抑制剂提供了一个很好的选择。
{"title":"Synthesis and biological evaluation of quinoxaline derivatives as ASK1 inhibitors.","authors":"Xiaorui Han, Pingping Lan, Qianfeng Chen, Hua Liu, Zhongwen Chen, Tiantian Wang, Zengtao Wang","doi":"10.1080/14756366.2024.2414382","DOIUrl":"10.1080/14756366.2024.2414382","url":null,"abstract":"<p><p>Inhibiting apoptosis signal regulated kinase 1 (ASK1) is an attractive strategy for treating diseases such as non-alcoholic steatohepatitis and multiple sclerosis. Here, we report the discovery of a dibromo substituted quinoxaline fragment containing <b>26e</b> as an effective small-molecule inhibitor of ASK1, with an IC<sub>50</sub> value of 30.17 nM. In addition, the cell survival rate of <b>26e</b> at different concentrations was greater than 80%, especially at 0.4 μM. Its cell survival rate was significantly higher than <b>GS-4997</b>, indicating its good safety in normal human liver LO2 cells. The Oil Red O staining experiment showed that <b>26e</b> decreased the lipid droplets in a dose-dependent manner. Further biochemical analyses revealed that <b>26e</b> could reduce the content of T-CHO, LDL, and TG in FFA-induced LO2 cells, and had the potential to treat non-alcoholic fatty disease. These findings provide a good choice for the future development of ASK1 inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2414382"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitamin B6 inhibits activity of Helicobacter pylori adenylosuccinate synthetase and growth of reference and clinical, antibiotic-resistant H. pylori strains. 维生素 B6 可抑制幽门螺旋杆菌腺苷琥珀酸合成酶的活性以及参考菌株和临床抗生素耐药幽门螺旋杆菌菌株的生长。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-16 DOI: 10.1080/14756366.2024.2372734
Marta Ilona Wojtyś, Weronika Maksymiuk, Marta Narczyk, Ante Bubić, Ivana Leščić Ašler, Paweł Krzyżek, Grażyna Gościniak, Elżbieta Katarzyna Jagusztyn-Krynicka, Agnieszka Bzowska

The current therapies against gastric pathogen Helicobacter pylori are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of H. pylori. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and in silico experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from H. pylori by the competition with GTP (IC50eq ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against H. pylori.

目前针对胃病原体幽门螺旋杆菌的疗法对 20% 以上的患者无效。属于嘌呤挽救途径的酶被认为是这种病原体的新型药物靶点。因此,本研究的主要目的是确定维生素 B6 的一种活性形式--5'-磷酸吡哆醛(PLP)对幽门螺杆菌参考菌株和临床菌株的抗菌活性。通过广泛的微生物学、物理化学(紫外线吸收、液相色谱-质谱联用仪、X 射线分析)和硅学实验,我们证明了 PLP 通过与 GTP 竞争(IC50eq ∼ 30 nM)来抑制幽门螺杆菌的腺苷琥珀酸合成酶(AdSS)。这种行为归因于与一个赖氨酸残基(与 AdSS 的 GTP 结合位点中的 Lys322 形成共价键)形成了希夫碱,并在维生素 C 的存在下得到增强。
{"title":"Vitamin B6 inhibits activity of <i>Helicobacter pylori</i> adenylosuccinate synthetase and growth of reference and clinical, antibiotic-resistant <i>H. pylori</i> strains.","authors":"Marta Ilona Wojtyś, Weronika Maksymiuk, Marta Narczyk, Ante Bubić, Ivana Leščić Ašler, Paweł Krzyżek, Grażyna Gościniak, Elżbieta Katarzyna Jagusztyn-Krynicka, Agnieszka Bzowska","doi":"10.1080/14756366.2024.2372734","DOIUrl":"10.1080/14756366.2024.2372734","url":null,"abstract":"<p><p>The current therapies against gastric pathogen <i>Helicobacter pylori</i> are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of <i>H. pylori</i>. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and <i>in silico</i> experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from <i>H. pylori</i> by the competition with GTP (IC<sub>50</sub><sup>eq</sup> ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against <i>H. pylori</i>.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2372734"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease. 作为选择性丁酰胆碱酯酶抑制剂治疗阿尔茨海默病的新型抗神经炎吡喃酮-氨基甲酸酯衍生物。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-02-16 DOI: 10.1080/14756366.2024.2313682
Chuanyu Yu, Xueyan Liu, Bingxiang Ma, Jiexin Xu, Yiquan Chen, Chaoxian Dai, Huaping Peng, Daijun Zha

Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC50 = 4.68 nM; huBuChE IC50 = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD50 > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.

丁酰胆碱酯酶(BuChE)和神经炎症最近已成为阿尔茨海默病(AD)的有希望的治疗方向。在此,我们合成了 19 种新型吡喃酮-氨基甲酸酯衍生物,并评估了它们对胆碱酯酶和神经炎症的活性。最佳化合物 7p 表现出平衡的 BuChE 抑制活性(eqBuChE IC50 = 4.68 nM;huBuChE IC50 = 9.12 nM)和抗神经炎活性(10 μM 时 NO 抑制率 = 28.82%,与氢化可的松相当)。酶动力学和对接研究证实化合物 7p 是一种混合型 BuChE 抑制剂。此外,化合物 7p 在硅预测中显示出良好的药物相似性,并在 PAMPA-BBB 试验中表现出较高的 BBB 渗透性。经急性毒性实验验证,化合物 7p 在体内具有良好的安全性(半数致死剂量大于 1000 毫克/千克)。最重要的是,在东莨菪碱诱导的小鼠模型中,化合物 7p 能有效缓解认知和记忆障碍,其效果与利伐斯的明相当。因此,我们认为化合物 7p 有望成为治疗注意力缺失症的先导化合物。
{"title":"Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease.","authors":"Chuanyu Yu, Xueyan Liu, Bingxiang Ma, Jiexin Xu, Yiquan Chen, Chaoxian Dai, Huaping Peng, Daijun Zha","doi":"10.1080/14756366.2024.2313682","DOIUrl":"10.1080/14756366.2024.2313682","url":null,"abstract":"<p><p>Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound <b>7p</b> exhibited balanced BuChE inhibitory activity (eqBuChE IC<sub>50</sub> = 4.68 nM; huBuChE IC<sub>50</sub> = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound <b>7p</b> was a mix-type BuChE inhibitor. Additionally, compound <b>7p</b> displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound <b>7p</b> had good safety in vivo as verified by an acute toxicity assay (LD<sub>50</sub> > 1000 mg/kg). Most importantly, compound <b>7p</b> effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound <b>7p</b> could serve as a promising lead compound for treating AD.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2313682"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-07-29 DOI: 10.1080/14756366.2024.2374156
{"title":"Correction.","authors":"","doi":"10.1080/14756366.2024.2374156","DOIUrl":"10.1080/14756366.2024.2374156","url":null,"abstract":"","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2374156"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and synthesis of triazolopyridine derivatives as potent JAK/HDAC dual inhibitors with broad-spectrum antiproliferative activity. 设计和合成具有广谱抗增殖活性的强效 JAK/HDAC 双抑制剂三唑吡啶衍生物。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-08 DOI: 10.1080/14756366.2024.2409771
Zhengshui Xu, Changchun Ye, Xingjie Wang, Ranran Kong, Zilu Chen, Jing Shi, Xin Chen, Shiyuan Liu

A series of triazolopyridine-based dual JAK/HDAC inhibitors were rationally designed and synthesised by merging different pharmacophores into one molecule. All triazolopyridine derivatives exhibited potent inhibitory activities against both targets and the best compound 4-(((5-(benzo[d][1, 3]dioxol-5-yl)-[1, 2, 4]triazolo[1, 5-a]pyridin-2-yl)amino)methyl)-N-hydroxybenzamide (19) was dug out. 19 was proved to be a pan-HDAC and JAK1/2 dual inhibitor and displayed high cytotoxicity against two cancer cell lines MDA-MB-231 and RPMI-8226 with IC50 values in submicromolar range. Docking simulation revealed that 19 fitted well into the active sites of HDAC and JAK proteins. Moreover, 19 exhibited better metabolic stability in vitro than SAHA. Our study demonstrated that compound 19 was a promising candidate for further preclinical studies.

通过将不同的药理作用合二为一,合理地设计和合成了一系列基于三唑吡啶的 JAK/HDAC 双重抑制剂。所有三唑并吡啶衍生物对这两个靶点都表现出了强效的抑制活性,其中最好的化合物是 4-(((5-(苯并[d][1, 3]二恶茂-5-基)-[1, 2, 4]三唑并[1, 5-a]吡啶-2-基)氨基)甲基)-N-羟基苯甲酰胺 (19)。19 被证明是一种泛 HDAC 和 JAK1/2 双抑制剂,对 MDA-MB-231 和 RPMI-8226 两种癌细胞株具有很高的细胞毒性,IC50 值在亚摩尔范围内。对接模拟显示,19 与 HDAC 和 JAK 蛋白的活性位点非常吻合。此外,与 SAHA 相比,19 表现出更好的体外代谢稳定性。我们的研究表明,化合物 19 是一种有希望进行进一步临床前研究的候选化合物。
{"title":"Design and synthesis of triazolopyridine derivatives as potent JAK/HDAC dual inhibitors with broad-spectrum antiproliferative activity.","authors":"Zhengshui Xu, Changchun Ye, Xingjie Wang, Ranran Kong, Zilu Chen, Jing Shi, Xin Chen, Shiyuan Liu","doi":"10.1080/14756366.2024.2409771","DOIUrl":"10.1080/14756366.2024.2409771","url":null,"abstract":"<p><p>A series of triazolopyridine-based dual JAK/HDAC inhibitors were rationally designed and synthesised by merging different pharmacophores into one molecule. All triazolopyridine derivatives exhibited potent inhibitory activities against both targets and the best compound 4-(((5-(benzo[<i>d</i>][1, <i>3</i>]dioxol-5-yl)-[1, 2, 4]triazolo[1, 5-<i>a</i>]pyridin-2-yl)amino)methyl)-<i>N</i>-hydroxybenzamide (19) was dug out. 19 was proved to be a pan-HDAC and JAK1/2 dual inhibitor and displayed high cytotoxicity against two cancer cell lines MDA-MB-231 and RPMI-8226 with IC<sub>50</sub> values in submicromolar range. Docking simulation revealed that 19 fitted well into the active sites of HDAC and JAK proteins. Moreover, 19 exhibited better metabolic stability in vitro than SAHA. Our study demonstrated that compound 19 was a promising candidate for further preclinical studies.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2409771"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies. 与苊烯酮相连的新型咪唑-2-硫酮作为双重 DNA 中间体和拓扑异构酶 II 抑制剂:结构优化、对接和细胞凋亡研究。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-03-15 DOI: 10.1080/14756366.2024.2311818
Asmaa H Mohamed, Mohammed B Alshammari, Ashraf A Aly, Kamal U Sadek, Akil Ahmad, Eman A Aziz, Amira F El-Yazbi, Eman J El-Agroudy, Marwa E Abdelaziz

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.

本文合成了一系列新的 2-((3,5-二取代-2-硫酮-咪唑-1-基)亚氨基)苊烯-1(2H)-酮。咪唑-2-硫酮与苊烯-1-酮形成了一个混合支架,通过直接插入 DNA 和抑制拓扑异构酶 II 酶,整合了 DNA 损伤所必需的关键结构元素。利用铽荧光探针对所有合成的化合物进行了筛选,以检测它们对 DNA 的损伤。结果表明,除了 4-(4-氯苯基)咪唑 5h 和 5j 外,4-苯基咪唑 5b 和 5e 也能在 ctDNA 中诱导出可检测到的强效损伤。利用 MTT 试验进一步评估了这四种最有效的 DNA 中间体化合物对 HepG2、MCF-7 和 HCT-116 的抗增殖活性。化合物 5b 和 5h 对乳腺癌细胞株 MCF-7 的抗癌活性最高,分别是多柔比星活性的 1.5 倍和 3 倍。因此,咪唑-2-硫酮系苊烯酮衍生物可被视为开发有效的 DNA 中间体和拓扑异构酶 II 双重抑制剂的前景广阔的支架。
{"title":"New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies.","authors":"Asmaa H Mohamed, Mohammed B Alshammari, Ashraf A Aly, Kamal U Sadek, Akil Ahmad, Eman A Aziz, Amira F El-Yazbi, Eman J El-Agroudy, Marwa E Abdelaziz","doi":"10.1080/14756366.2024.2311818","DOIUrl":"10.1080/14756366.2024.2311818","url":null,"abstract":"<p><p>In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2<i>H</i>)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage <i>via</i> direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles <b>5b</b> and <b>5e</b> in addition to 4-(4-chlorophenyl)imidazoles <b>5h</b> and <b>5j</b> would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds <b>5b</b> and <b>5h</b> against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than <b>doxorubicin</b>, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2311818"},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Enzyme Inhibition and Medicinal Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1