首页 > 最新文献

Journal of Enzyme Inhibition and Medicinal Chemistry最新文献

英文 中文
Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease. 作为选择性丁酰胆碱酯酶抑制剂治疗阿尔茨海默病的新型抗神经炎吡喃酮-氨基甲酸酯衍生物。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-02-16 DOI: 10.1080/14756366.2024.2313682
Chuanyu Yu, Xueyan Liu, Bingxiang Ma, Jiexin Xu, Yiquan Chen, Chaoxian Dai, Huaping Peng, Daijun Zha

Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC50 = 4.68 nM; huBuChE IC50 = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD50 > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.

丁酰胆碱酯酶(BuChE)和神经炎症最近已成为阿尔茨海默病(AD)的有希望的治疗方向。在此,我们合成了 19 种新型吡喃酮-氨基甲酸酯衍生物,并评估了它们对胆碱酯酶和神经炎症的活性。最佳化合物 7p 表现出平衡的 BuChE 抑制活性(eqBuChE IC50 = 4.68 nM;huBuChE IC50 = 9.12 nM)和抗神经炎活性(10 μM 时 NO 抑制率 = 28.82%,与氢化可的松相当)。酶动力学和对接研究证实化合物 7p 是一种混合型 BuChE 抑制剂。此外,化合物 7p 在硅预测中显示出良好的药物相似性,并在 PAMPA-BBB 试验中表现出较高的 BBB 渗透性。经急性毒性实验验证,化合物 7p 在体内具有良好的安全性(半数致死剂量大于 1000 毫克/千克)。最重要的是,在东莨菪碱诱导的小鼠模型中,化合物 7p 能有效缓解认知和记忆障碍,其效果与利伐斯的明相当。因此,我们认为化合物 7p 有望成为治疗注意力缺失症的先导化合物。
{"title":"Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease.","authors":"Chuanyu Yu, Xueyan Liu, Bingxiang Ma, Jiexin Xu, Yiquan Chen, Chaoxian Dai, Huaping Peng, Daijun Zha","doi":"10.1080/14756366.2024.2313682","DOIUrl":"10.1080/14756366.2024.2313682","url":null,"abstract":"<p><p>Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound <b>7p</b> exhibited balanced BuChE inhibitory activity (eqBuChE IC<sub>50</sub> = 4.68 nM; huBuChE IC<sub>50</sub> = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound <b>7p</b> was a mix-type BuChE inhibitor. Additionally, compound <b>7p</b> displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound <b>7p</b> had good safety in vivo as verified by an acute toxicity assay (LD<sub>50</sub> > 1000 mg/kg). Most importantly, compound <b>7p</b> effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound <b>7p</b> could serve as a promising lead compound for treating AD.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878344/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-07-29 DOI: 10.1080/14756366.2024.2374156
{"title":"Correction.","authors":"","doi":"10.1080/14756366.2024.2374156","DOIUrl":"10.1080/14756366.2024.2374156","url":null,"abstract":"","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-cell bioluminescence resonance energy transfer (BRET)-based assay uncovers ceritinib and CA-074 as SARS-CoV-2 papain-like protease inhibitors. 基于细胞内生物发光共振能量转移(BRET)的检测发现 Ceritinib 和 CA-074 是 SARS-CoV-2 类木瓜蛋白酶抑制剂。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI: 10.1080/14756366.2024.2387417
Mei Li, Zhu-Chun Bei, Yongtian Yuan, Baogang Wang, Dongna Zhang, Likun Xu, Liangliang Zhao, Qin Xu, Yabin Song

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.

木瓜蛋白酶(Papain-like protease,PLpro)是一种极具吸引力的抗冠状病毒靶标。然而,现有 PLpro 检测方法的局限性和有效活性化合物的稀缺性阻碍了 PLpro 抑制剂的开发。我们开发了一种基于 BRET 的新型细胞内 PLpro 检测方法,并用它来评估和发现 SARS-CoV-2 PLpro 抑制剂。所开发的检测方法在检测细胞内 PLpro 活性降低方面表现出了极高的灵敏度,同时在抑制剂评估和高通量筛选方面也具有极高的可靠性和性能。利用这种检测方法,三种蛋白酶抑制剂被鉴定为新型 PLpro 抑制剂,它们在结构上与以前已知的抑制剂不同。随后进行的酶测定和基于分子对接的配体-蛋白质相互作用分析表明,塞瑞替尼可直接抑制PLpro,与PLpro中的底物结合口袋显示出高度的几何互补性,而CA-074甲酯则会发生细胞内水解,暴露出一个游离的羧羟基,该羧羟基对于与BL2槽中的G266发生氢键作用至关重要,从而导致PLpro受到抑制。
{"title":"In-cell bioluminescence resonance energy transfer (BRET)-based assay uncovers ceritinib and CA-074 as SARS-CoV-2 papain-like protease inhibitors.","authors":"Mei Li, Zhu-Chun Bei, Yongtian Yuan, Baogang Wang, Dongna Zhang, Likun Xu, Liangliang Zhao, Qin Xu, Yabin Song","doi":"10.1080/14756366.2024.2387417","DOIUrl":"10.1080/14756366.2024.2387417","url":null,"abstract":"<p><p>Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitamin B6 inhibits activity of Helicobacter pylori adenylosuccinate synthetase and growth of reference and clinical, antibiotic-resistant H. pylori strains. 维生素 B6 可抑制幽门螺旋杆菌腺苷琥珀酸合成酶的活性以及参考菌株和临床抗生素耐药幽门螺旋杆菌菌株的生长。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-08-16 DOI: 10.1080/14756366.2024.2372734
Marta Ilona Wojtyś, Weronika Maksymiuk, Marta Narczyk, Ante Bubić, Ivana Leščić Ašler, Paweł Krzyżek, Grażyna Gościniak, Elżbieta Katarzyna Jagusztyn-Krynicka, Agnieszka Bzowska

The current therapies against gastric pathogen Helicobacter pylori are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of H. pylori. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and in silico experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from H. pylori by the competition with GTP (IC50eq ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against H. pylori.

目前针对胃病原体幽门螺旋杆菌的疗法对 20% 以上的患者无效。属于嘌呤挽救途径的酶被认为是这种病原体的新型药物靶点。因此,本研究的主要目的是确定维生素 B6 的一种活性形式--5'-磷酸吡哆醛(PLP)对幽门螺杆菌参考菌株和临床菌株的抗菌活性。通过广泛的微生物学、物理化学(紫外线吸收、液相色谱-质谱联用仪、X 射线分析)和硅学实验,我们证明了 PLP 通过与 GTP 竞争(IC50eq ∼ 30 nM)来抑制幽门螺杆菌的腺苷琥珀酸合成酶(AdSS)。这种行为归因于与一个赖氨酸残基(与 AdSS 的 GTP 结合位点中的 Lys322 形成共价键)形成了希夫碱,并在维生素 C 的存在下得到增强。
{"title":"Vitamin B6 inhibits activity of <i>Helicobacter pylori</i> adenylosuccinate synthetase and growth of reference and clinical, antibiotic-resistant <i>H. pylori</i> strains.","authors":"Marta Ilona Wojtyś, Weronika Maksymiuk, Marta Narczyk, Ante Bubić, Ivana Leščić Ašler, Paweł Krzyżek, Grażyna Gościniak, Elżbieta Katarzyna Jagusztyn-Krynicka, Agnieszka Bzowska","doi":"10.1080/14756366.2024.2372734","DOIUrl":"10.1080/14756366.2024.2372734","url":null,"abstract":"<p><p>The current therapies against gastric pathogen <i>Helicobacter pylori</i> are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of <i>H. pylori</i>. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and <i>in silico</i> experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from <i>H. pylori</i> by the competition with GTP (IC<sub>50</sub><sup>eq</sup> ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against <i>H. pylori</i>.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and biological evaluation of quinoxaline derivatives as ASK1 inhibitors. 作为 ASK1 抑制剂的喹喔啉衍生物的合成和生物学评价。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI: 10.1080/14756366.2024.2414382
Xiaorui Han, Pingping Lan, Qianfeng Chen, Hua Liu, Zhongwen Chen, Tiantian Wang, Zengtao Wang

Inhibiting apoptosis signal regulated kinase 1 (ASK1) is an attractive strategy for treating diseases such as non-alcoholic steatohepatitis and multiple sclerosis. Here, we report the discovery of a dibromo substituted quinoxaline fragment containing 26e as an effective small-molecule inhibitor of ASK1, with an IC50 value of 30.17 nM. In addition, the cell survival rate of 26e at different concentrations was greater than 80%, especially at 0.4 μM. Its cell survival rate was significantly higher than GS-4997, indicating its good safety in normal human liver LO2 cells. The Oil Red O staining experiment showed that 26e decreased the lipid droplets in a dose-dependent manner. Further biochemical analyses revealed that 26e could reduce the content of T-CHO, LDL, and TG in FFA-induced LO2 cells, and had the potential to treat non-alcoholic fatty disease. These findings provide a good choice for the future development of ASK1 inhibitors.

抑制凋亡信号调控激酶 1(ASK1)是治疗非酒精性脂肪性肝炎和多发性硬化症等疾病的一种有吸引力的策略。在此,我们报告发现了一种含有 26e 的二溴取代喹喔啉片段,它是一种有效的 ASK1 小分子抑制剂,IC50 值为 30.17 nM。此外,26e 在不同浓度下的细胞存活率均大于 80%,尤其是在 0.4 μM 时。其细胞存活率明显高于 GS-4997,表明其在正常人肝脏 LO2 细胞中具有良好的安全性。油红 O 染色实验表明,26e 能以剂量依赖的方式减少脂滴。进一步的生化分析表明,26e 能降低 FFA 诱导的 LO2 细胞中 T-CHO、LDL 和 TG 的含量,具有治疗非酒精性脂肪病的潜力。这些发现为今后开发 ASK1 抑制剂提供了一个很好的选择。
{"title":"Synthesis and biological evaluation of quinoxaline derivatives as ASK1 inhibitors.","authors":"Xiaorui Han, Pingping Lan, Qianfeng Chen, Hua Liu, Zhongwen Chen, Tiantian Wang, Zengtao Wang","doi":"10.1080/14756366.2024.2414382","DOIUrl":"10.1080/14756366.2024.2414382","url":null,"abstract":"<p><p>Inhibiting apoptosis signal regulated kinase 1 (ASK1) is an attractive strategy for treating diseases such as non-alcoholic steatohepatitis and multiple sclerosis. Here, we report the discovery of a dibromo substituted quinoxaline fragment containing <b>26e</b> as an effective small-molecule inhibitor of ASK1, with an IC<sub>50</sub> value of 30.17 nM. In addition, the cell survival rate of <b>26e</b> at different concentrations was greater than 80%, especially at 0.4 μM. Its cell survival rate was significantly higher than <b>GS-4997</b>, indicating its good safety in normal human liver LO2 cells. The Oil Red O staining experiment showed that <b>26e</b> decreased the lipid droplets in a dose-dependent manner. Further biochemical analyses revealed that <b>26e</b> could reduce the content of T-CHO, LDL, and TG in FFA-induced LO2 cells, and had the potential to treat non-alcoholic fatty disease. These findings provide a good choice for the future development of ASK1 inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors. n -烷基异黄酮和吲哚作为乙酰胆碱酯酶和丁基胆碱酯酶抑制剂的评价。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2023-12-07 DOI: 10.1080/14756366.2023.2286935
Kaitlyn N Alcorn, Isabelle A Oberhauser, Matthew D Politeski, Todd J Eckroat

Two series of N-alkyl isatins and N-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the N-alkyl isatins 4a-j, the addition of the N-alkyl group improved inhibition potency towards AChE and BChE compared to isatin. Selectivity towards inhibition of BChE was observed, and the increase in size of the N-alkyl group positively correlated to improved inhibition potency. The most potent inhibitor for BChE was 4i (IC50 = 3.77 µM, 22-fold selectivity for BChE over AChE). N-alkyl indoles 5a-j showed similar inhibition of AChE, the most potent being 5g (IC50 = 35.0 µM), but 5a-j lost activity towards BChE. This suggests an important role of the 3-oxo group on isatin for BChE inhibition, and molecular docking of 4i with human BChE indicates a key hydrogen bond between this group and Ser198 and His438 of the BChE catalytic triad.

合成了两个不同烷基大小的n -烷基isatins和n -烷基吲哚,并对乙酰胆碱酯酶(AChE)和丁基胆碱酯酶(BChE)的抑制作用进行了评价。在n -烷基isatins 4a-j中,与isatin相比,n -烷基基团的加入提高了对AChE和BChE的抑制能力。观察到对BChE的抑制选择性,并且n -烷基基团大小的增加与抑制效力的提高正相关。对BChE最有效的抑制剂为4i (IC50 = 3.77µM,选择性为AChE的22倍)。n -烷基吲哚5a-j对乙酰胆碱酯(AChE)的抑制作用相似,IC50为35.0µM,最大抑制作用为5g,但对BChE的抑制作用减弱。这表明3-氧基在isatin抑制BChE中起重要作用,4i与人BChE的分子对接表明该基团与BChE催化三联体的Ser198和His438之间存在关键氢键。
{"title":"Evaluation of <i>N</i>-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors.","authors":"Kaitlyn N Alcorn, Isabelle A Oberhauser, Matthew D Politeski, Todd J Eckroat","doi":"10.1080/14756366.2023.2286935","DOIUrl":"10.1080/14756366.2023.2286935","url":null,"abstract":"<p><p>Two series of <i>N</i>-alkyl isatins and <i>N</i>-alkyl indoles varying in size of the alkyl group were synthesised and evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Among the <i>N</i>-alkyl isatins <b>4a</b>-<b>j</b>, the addition of the <i>N</i>-alkyl group improved inhibition potency towards AChE and BChE compared to isatin. Selectivity towards inhibition of BChE was observed, and the increase in size of the <i>N</i>-alkyl group positively correlated to improved inhibition potency. The most potent inhibitor for BChE was <b>4i</b> (IC<sub>50</sub> = 3.77 µM, 22-fold selectivity for BChE over AChE). N-alkyl indoles <b>5a</b>-<b>j</b> showed similar inhibition of AChE, the most potent being <b>5g</b> (IC<sub>50</sub> = 35.0 µM), but <b>5a</b>-<b>j</b> lost activity towards BChE. This suggests an important role of the 3-oxo group on isatin for BChE inhibition, and molecular docking of <b>4i</b> with human BChE indicates a key hydrogen bond between this group and Ser198 and His438 of the BChE catalytic triad.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. 通过虚拟筛选和生物学评价鉴定BCKDK的推定变构抑制剂。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2023-12-07 DOI: 10.1080/14756366.2023.2290458
Chunqiong Li, Quanjun Yang, Li Zhang

Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.

支链氨基酸(BCAAs)的异常积累可导致代谢疾病和癌症。支链α-酮酸脱氢酶激酶(branch -chain α-keto acid dehydrogenase kinase, BCKDK)是BCAA分解代谢的关键负调控因子,靶向BCKDK为BCAA积累引起的疾病提供了一种有希望的治疗方法。在这里,我们通过整合变构结合位点预测、大规模配体数据库虚拟筛选和生物活性评估分析,筛选出PPHN和POAB作为新型的假定变构抑制剂。与BCKDK的结合亲和力均较高,Kd值分别为3.9 μM和1.86 μM。在体内实验中,这些抑制剂对多种癌细胞表现出良好的激酶抑制活性和显著的抗增殖和促凋亡作用。最后,大量RNA-seq分析显示,PPHN和POAB通过一系列信号通路抑制细胞生长。综上所述,我们的研究结果强调了两种新型BCKDK抑制剂作为与BCAA代谢功能障碍相关的代谢性疾病和癌症的有效治疗候选者。
{"title":"Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation.","authors":"Chunqiong Li, Quanjun Yang, Li Zhang","doi":"10.1080/14756366.2023.2290458","DOIUrl":"10.1080/14756366.2023.2290458","url":null,"abstract":"<p><p>Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with K<sub>d</sub> values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies. 与苊烯酮相连的新型咪唑-2-硫酮作为双重 DNA 中间体和拓扑异构酶 II 抑制剂:结构优化、对接和细胞凋亡研究。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-03-15 DOI: 10.1080/14756366.2024.2311818
Asmaa H Mohamed, Mohammed B Alshammari, Ashraf A Aly, Kamal U Sadek, Akil Ahmad, Eman A Aziz, Amira F El-Yazbi, Eman J El-Agroudy, Marwa E Abdelaziz

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.

本文合成了一系列新的 2-((3,5-二取代-2-硫酮-咪唑-1-基)亚氨基)苊烯-1(2H)-酮。咪唑-2-硫酮与苊烯-1-酮形成了一个混合支架,通过直接插入 DNA 和抑制拓扑异构酶 II 酶,整合了 DNA 损伤所必需的关键结构元素。利用铽荧光探针对所有合成的化合物进行了筛选,以检测它们对 DNA 的损伤。结果表明,除了 4-(4-氯苯基)咪唑 5h 和 5j 外,4-苯基咪唑 5b 和 5e 也能在 ctDNA 中诱导出可检测到的强效损伤。利用 MTT 试验进一步评估了这四种最有效的 DNA 中间体化合物对 HepG2、MCF-7 和 HCT-116 的抗增殖活性。化合物 5b 和 5h 对乳腺癌细胞株 MCF-7 的抗癌活性最高,分别是多柔比星活性的 1.5 倍和 3 倍。因此,咪唑-2-硫酮系苊烯酮衍生物可被视为开发有效的 DNA 中间体和拓扑异构酶 II 双重抑制剂的前景广阔的支架。
{"title":"New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies.","authors":"Asmaa H Mohamed, Mohammed B Alshammari, Ashraf A Aly, Kamal U Sadek, Akil Ahmad, Eman A Aziz, Amira F El-Yazbi, Eman J El-Agroudy, Marwa E Abdelaziz","doi":"10.1080/14756366.2024.2311818","DOIUrl":"10.1080/14756366.2024.2311818","url":null,"abstract":"<p><p>In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2<i>H</i>)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage <i>via</i> direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles <b>5b</b> and <b>5e</b> in addition to 4-(4-chlorophenyl)imidazoles <b>5h</b> and <b>5j</b> would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds <b>5b</b> and <b>5h</b> against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than <b>doxorubicin</b>, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a multi-targeted chemotherapeutic approach based on G-quadruplex stabilisation and carbonic anhydrase inhibition. 开发基于 G-四叉链稳定和碳酸酐酶抑制的多靶点化疗方法。
IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-06-18 DOI: 10.1080/14756366.2024.2366236
Alessio Nocentini, Anna Di Porzio, Alessandro Bonardi, Carla Bazzicalupi, Andrea Petreni, Tarita Biver, Silvia Bua, Simona Marzano, Jussara Amato, Bruno Pagano, Nunzia Iaccarino, Stefano De Tito, Stefano Amente, Claudiu T Supuran, Antonio Randazzo, Paola Gratteri

A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. In vitro experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.

本研究提出了一类新型化合物,旨在打击两个抗肿瘤靶点--G-四叠体结构和人类碳酸酐酶(hCAs)IX 和 XII。小分子诱导/稳定 G 型四叠体结构已成为一种抗癌策略,可破坏端粒的维持并减少癌基因的表达。hCAs IX 和 XII 是公认的抗肿瘤靶点,在许多缺氧性肿瘤中上调并导致转移。报告中的配体具有小檗碱 G-四联体稳定剂支架,与抑制 hCAs IX 和 XII 的分子相连。体外实验表明,我们的化合物能选择性地稳定 G-四叉结构并抑制 hCAs IX 和 XII。我们还获得了端粒 G-四叉体与其中一种配体复合物的晶体结构,从而揭示了配体与目标的相互作用模式。最有希望的配体对缺氧条件下的 CA IX 阳性 HeLa 癌细胞具有显著的细胞毒性,并能稳定肿瘤细胞内的 G-四联体。
{"title":"Development of a multi-targeted chemotherapeutic approach based on G-quadruplex stabilisation and carbonic anhydrase inhibition.","authors":"Alessio Nocentini, Anna Di Porzio, Alessandro Bonardi, Carla Bazzicalupi, Andrea Petreni, Tarita Biver, Silvia Bua, Simona Marzano, Jussara Amato, Bruno Pagano, Nunzia Iaccarino, Stefano De Tito, Stefano Amente, Claudiu T Supuran, Antonio Randazzo, Paola Gratteri","doi":"10.1080/14756366.2024.2366236","DOIUrl":"10.1080/14756366.2024.2366236","url":null,"abstract":"<p><p>A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. <i>In vitro</i> experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anilino-1,4-naphthoquinones as potent mushroom tyrosinase inhibitors: in vitro and in silico studies. 作为强效蘑菇酪氨酸酶抑制剂的苯胺基-1,4-萘醌类化合物:体外和硅学研究。
IF 5.6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-05-30 DOI: 10.1080/14756366.2024.2357174
Sahachai Sabuakham, Sutita Nasoontorn, Napat Kongtaworn, Thanyada Rungrotmongkol, Atit Silsirivanit, Ratchanok Pingaew, Panupong Mahalapbutr

Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, in vitro and in silico techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (1, 5, and 10) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds 1, 5, and particularly 10 displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.

酪氨酸酶是黑色素合成的关键酶,也是开发脱色剂的主要目标。在这项工作中,研究人员采用体外和硅学技术,从一组 12 种苯胺基-1,4-萘醌衍生物中鉴定出新型酪氨酸酶抑制剂。蘑菇酪氨酸酶活性测定结果表明,在这 12 种衍生物中,有三种化合物(1、5 和 10)对蘑菇酪氨酸酶具有最显著的抑制活性,其效果超过了曲酸。分子对接显示,所有研究的衍生物都与铜离子和酶活性位点的氨基酸残基相互作用。分子动力学模拟揭示了酶抑制剂复合物的稳定性,其中化合物 1、5,尤其是化合物 10 比曲酸显示出更高的稳定性、原子接触性和结构紧密性。药物相似性预测进一步增强了苯胺基-1,4-萘醌类化合物作为新型酪氨酸酶抑制剂的开发潜力,可用于治疗色素沉着疾病。
{"title":"Anilino-1,4-naphthoquinones as potent mushroom tyrosinase inhibitors: <i>in vitro</i> and <i>in silico</i> studies.","authors":"Sahachai Sabuakham, Sutita Nasoontorn, Napat Kongtaworn, Thanyada Rungrotmongkol, Atit Silsirivanit, Ratchanok Pingaew, Panupong Mahalapbutr","doi":"10.1080/14756366.2024.2357174","DOIUrl":"10.1080/14756366.2024.2357174","url":null,"abstract":"<p><p>Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, <i>in vitro</i> and <i>in silico</i> techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (<b>1</b>, <b>5</b>, and <b>10</b>) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds <b>1</b>, <b>5</b>, and particularly <b>10</b> displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Enzyme Inhibition and Medicinal Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1