On the Expected Discounted Penalty Function Using Physics-Informed Neural Network

IF 1.3 4区 数学 Q1 MATHEMATICS Journal of Mathematics Pub Date : 2023-12-28 DOI:10.1155/2023/9950023
Jiayu Wang, Houchun Wang
{"title":"On the Expected Discounted Penalty Function Using Physics-Informed Neural Network","authors":"Jiayu Wang, Houchun Wang","doi":"10.1155/2023/9950023","DOIUrl":null,"url":null,"abstract":"We study the expected discounted penalty at ruin under a stochastic discount rate for the compound Poisson risk model with a threshold dividend strategy. The discount rate is modeled by a Poisson process and a standard Brownian motion. By applying the differentiation method and total expectation formula, we obtain an integrodifferential equation for the expected discounted penalty function. From this integrodifferential equation, a renewal equation and an asymptotic formula satisfied by the expected discounted penalty function are derived. In order to solve the integrodifferential equation, we use a physics-informed neural network (PINN) for the first time in risk theory and obtain the numerical solutions of the expected discounted penalty function in some special cases of the penalty at ruin.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2023/9950023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the expected discounted penalty at ruin under a stochastic discount rate for the compound Poisson risk model with a threshold dividend strategy. The discount rate is modeled by a Poisson process and a standard Brownian motion. By applying the differentiation method and total expectation formula, we obtain an integrodifferential equation for the expected discounted penalty function. From this integrodifferential equation, a renewal equation and an asymptotic formula satisfied by the expected discounted penalty function are derived. In order to solve the integrodifferential equation, we use a physics-informed neural network (PINN) for the first time in risk theory and obtain the numerical solutions of the expected discounted penalty function in some special cases of the penalty at ruin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用物理信息神经网络研究预期贴现惩罚函数
我们研究了具有门槛股息策略的复合泊松风险模型在随机贴现率条件下毁灭时的预期贴现惩罚。贴现率的模型是泊松过程和标准布朗运动。通过运用微分法和总期望公式,我们得到了期望贴现惩罚函数的积分微分方程。根据这个积分微分方程,可以得出预期贴现惩罚函数所满足的更新方程和渐近公式。为了求解这个整微分方程,我们在风险理论中首次使用了物理信息神经网络(PINN),并得到了预期贴现惩罚函数在一些毁灭惩罚特殊情况下的数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
期刊最新文献
An Unconditionally Stable Numerical Method for Space Tempered Fractional Convection-Diffusion Models On the Exterior Degree of a Finite-Dimensional Lie Algebra Study of Hybrid Problems under Exponential Type Fractional-Order Derivatives Hankel Determinants for the Logarithmic Coefficients of a Subclass of Close-to-Star Functions Characterizing Topologically Dense Injective Acts and Their Monoid Connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1