Benchmark thermodynamic analysis of methylammonium lead iodide decomposition from first principles

IF 7 3区 材料科学 Q1 ENERGY & FUELS Journal of Physics-Energy Pub Date : 2023-12-27 DOI:10.1088/2515-7655/ad139d
Douglas Heine, Hui-Chia Yu, Volker Blum
{"title":"Benchmark thermodynamic analysis of methylammonium lead iodide decomposition from first principles","authors":"Douglas Heine, Hui-Chia Yu, Volker Blum","doi":"10.1088/2515-7655/ad139d","DOIUrl":null,"url":null,"abstract":"Hybrid organic–inorganic perovskites (HOIPs) such as methylammonium lead iodide (MAPbI<sub>3</sub>) are promising candidates for use in photovoltaic cells and other semiconductor applications, but their limited chemical stability poses obstacles to their widespread use. <italic toggle=\"yes\">Ab initio</italic> modeling of finite-temperature and pressure thermodynamic equilibria of HOIPs with their decomposition products can reveal stability limits and help develop mitigation strategies. We here use a previously published experimental temperature-pressure equilibrium to benchmark and demonstrate the applicability of the harmonic and quasiharmonic approximations, combined with a simple entropy correction for the configurational freedom of methylammonium cations in solid MAPbI<sub>3</sub> and for several density functional approximations, to the thermodynamics of MAPbI<sub>3</sub> decomposition. We find that these approximations, together with the dispersion-corrected hybrid density functional HSE06, yield remarkably good agreement with the experimentally assessed equilibrium between <italic toggle=\"yes\">T</italic> = 326 K and <italic toggle=\"yes\">T</italic> = 407 K, providing a solid foundation for future broad thermodynamic assessments of HOIP stability.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"11 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad139d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid organic–inorganic perovskites (HOIPs) such as methylammonium lead iodide (MAPbI3) are promising candidates for use in photovoltaic cells and other semiconductor applications, but their limited chemical stability poses obstacles to their widespread use. Ab initio modeling of finite-temperature and pressure thermodynamic equilibria of HOIPs with their decomposition products can reveal stability limits and help develop mitigation strategies. We here use a previously published experimental temperature-pressure equilibrium to benchmark and demonstrate the applicability of the harmonic and quasiharmonic approximations, combined with a simple entropy correction for the configurational freedom of methylammonium cations in solid MAPbI3 and for several density functional approximations, to the thermodynamics of MAPbI3 decomposition. We find that these approximations, together with the dispersion-corrected hybrid density functional HSE06, yield remarkably good agreement with the experimentally assessed equilibrium between T = 326 K and T = 407 K, providing a solid foundation for future broad thermodynamic assessments of HOIP stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据第一原理对碘化甲铵铅分解进行基准热力学分析
甲基碘化铅铵(MAPbI3)等有机-无机杂化过氧化物(HOIPs)是光伏电池和其他半导体应用的理想候选材料,但其有限的化学稳定性阻碍了它们的广泛应用。建立 HOIPs 及其分解产物的有限温度和压力热力学平衡的 Ab initio 模型可以揭示其稳定性极限,并有助于制定缓解策略。在此,我们利用之前公布的实验温度-压力平衡来确定谐波近似和准谐波近似的基准,并结合针对固体 MAPbI3 中甲基铵阳离子构型自由度的简单熵校正和几种密度泛函近似来证明谐波近似和准谐波近似对 MAPbI3 分解热力学的适用性。我们发现,这些近似值连同色散校正混合密度函数 HSE06,与实验评估的 T = 326 K 和 T = 407 K 之间的平衡非常吻合,为未来对 HOIP 稳定性进行广泛的热力学评估奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
期刊最新文献
Hybrid energy storage systems for fast-developing renewable energy plants Critical review on the controllable growth and post-annealing on the heterojunction of the kesterite solar cells Synthesis and growth of solution-processed chiral perovskites Introduction of novel method of cyclic self-heating for the experimental quantification of the efficiency of caloric materials shown for LaFe11,4Mn0,35Si1,26Hx Effect of preparation routes on the performance of a multi-component AB2-type hydrogen storage alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1