Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Metrika Pub Date : 2023-12-27 DOI:10.1007/s00184-023-00936-y
Mátyás Barczy, Fanni Nedényi, Gyula Pap
{"title":"Mixing convergence of LSE for supercritical AR(2) processes with Gaussian innovations using random scaling","authors":"Mátyás Barczy, Fanni Nedényi, Gyula Pap","doi":"10.1007/s00184-023-00936-y","DOIUrl":null,"url":null,"abstract":"<p>We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"49 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00936-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove mixing convergence of the least squares estimator of autoregressive parameters for supercritical autoregressive processes of order 2 with Gaussian innovations having real characteristic roots with different absolute values. We use an appropriate random scaling such that the limit distribution is a two-dimensional normal distribution concentrated on a one-dimensional ray determined by the characteristic root having the larger absolute value.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用随机缩放对具有高斯创新的超临界 AR(2) 过程的 LSE 进行混合收敛
我们证明了具有不同绝对值实特征根的高斯创新的 2 阶超临界自回归过程的自回归参数最小二乘估计值的混合收敛性。我们使用适当的随机缩放,使得极限分布是集中在由绝对值较大的特征根所决定的一维射线上的二维正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
期刊最新文献
Smoothed partially linear varying coefficient quantile regression with nonignorable missing response Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs Mean test for high-dimensional data based on covariance matrix with linear structures Bounds of expectations of order statistics for distributions possessing monotone reversed failure rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1