Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Metrika Pub Date : 2024-09-09 DOI:10.1007/s00184-024-00972-2
Tian-fang Zhang, Yingxing Duan, Shengli Zhao, Zhiming Li
{"title":"Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs","authors":"Tian-fang Zhang, Yingxing Duan, Shengli Zhao, Zhiming Li","doi":"10.1007/s00184-024-00972-2","DOIUrl":null,"url":null,"abstract":"<p>The general minimum lower order confounding (GMC) is a criterion for selecting designs when the experimenter has prior information about the order of the importance of the factors. The paper considers the construction of <span>\\(3^{n-m}\\)</span> designs under the GMC criterion. Based on some theoretical results, it proves that some large GMC <span>\\(3^{n-m}\\)</span> designs can be obtained by combining some small resolution IV designs <i>T</i>. All the results for <span>\\(4\\le \\#\\{T\\} \\le 20\\)</span> are tabulated in the table, where <span>\\(\\#\\)</span> means the cardinality of a set.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"11 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00972-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The general minimum lower order confounding (GMC) is a criterion for selecting designs when the experimenter has prior information about the order of the importance of the factors. The paper considers the construction of \(3^{n-m}\) designs under the GMC criterion. Based on some theoretical results, it proves that some large GMC \(3^{n-m}\) designs can be obtained by combining some small resolution IV designs T. All the results for \(4\le \#\{T\} \le 20\) are tabulated in the table, where \(\#\) means the cardinality of a set.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过解析 IV 设计构建具有一般最小低阶混杂性的三级因子设计
一般最小低阶混杂(GMC)是当实验者拥有关于各因素重要性顺序的先验信息时选择设计的标准。本文考虑了在 GMC 标准下构建 \(3^{n-m}\) 设计。基于一些理论结果,它证明了一些大的 GMC (3^{n-m}\)设计可以通过组合一些小的分辨率 IV 设计 T 而得到。所有关于 \(4\le \#\{T\} \le 20\) 的结果都列在表中,其中 \(\#\) 表示集合的卡入度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
期刊最新文献
Smoothed partially linear varying coefficient quantile regression with nonignorable missing response Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs Mean test for high-dimensional data based on covariance matrix with linear structures Bounds of expectations of order statistics for distributions possessing monotone reversed failure rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1