Alexa Fernando, Matthias Kuipers, Georg Angenendt, Kai-Philipp Kairies, Matthieu Dubarry
{"title":"Benchmark dataset for the study of the relaxation of commercial NMC-811 and LFP cells","authors":"Alexa Fernando, Matthias Kuipers, Georg Angenendt, Kai-Philipp Kairies, Matthieu Dubarry","doi":"10.1016/j.xcrp.2023.101754","DOIUrl":null,"url":null,"abstract":"<p>Voltage relaxation can be a powerful indicator of lithium-ion battery characteristics, but variations in relaxation times complicate the widespread use of relaxation as an analytical tool. This study investigates the voltage relaxation behavior of commercial lithium-ion batteries, focusing on the impact of depth of discharge, rate, and temperature to gain a better understanding of relaxation and to improve state-of-charge estimation. Most of the data, available in a public dataset, are gathered using a unique protocol derived from intermittent titration techniques with an emphasis on ensuring that every rest is independent of the previous one. The findings demonstrate that relaxation behavior and open-circuit voltage settling times are influenced by depth of discharge, rate, current flow direction, and cell chemistry. In addition, the obtained dataset is used to test the validity of relaxation models to showcase the benefits of having a benchmark relaxation dataset available for validation of future open-circuit voltage forecasting studies.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"16 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101754","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Voltage relaxation can be a powerful indicator of lithium-ion battery characteristics, but variations in relaxation times complicate the widespread use of relaxation as an analytical tool. This study investigates the voltage relaxation behavior of commercial lithium-ion batteries, focusing on the impact of depth of discharge, rate, and temperature to gain a better understanding of relaxation and to improve state-of-charge estimation. Most of the data, available in a public dataset, are gathered using a unique protocol derived from intermittent titration techniques with an emphasis on ensuring that every rest is independent of the previous one. The findings demonstrate that relaxation behavior and open-circuit voltage settling times are influenced by depth of discharge, rate, current flow direction, and cell chemistry. In addition, the obtained dataset is used to test the validity of relaxation models to showcase the benefits of having a benchmark relaxation dataset available for validation of future open-circuit voltage forecasting studies.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.