Li Zhang, Brady K. Quinn, Cang Hui, Meng Lian, Johan Gielis, Jie Gao, Peijian Shi
{"title":"New indices to balance α-diversity against tree size inequality","authors":"Li Zhang, Brady K. Quinn, Cang Hui, Meng Lian, Johan Gielis, Jie Gao, Peijian Shi","doi":"10.1007/s11676-023-01686-3","DOIUrl":null,"url":null,"abstract":"<p>The number and composition of species in a community can be quantified with α-diversity indices, including species richness (<i>R</i>), Simpson’s index (<i>D</i>), and the Shannon–Wiener index (<i>H΄</i>). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m × 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of α-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three α-diversity indices (i.e., <i>R</i>, <i>D</i>, and <i>H'</i>) and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance α-diversity against the extent of TSI in the community: (1 − GI) × <i>D</i>, and (1 − GI) × <i>H'</i>. These new indices were significantly correlated with the original <i>D</i> and <i>H΄</i>, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"5 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-023-01686-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The number and composition of species in a community can be quantified with α-diversity indices, including species richness (R), Simpson’s index (D), and the Shannon–Wiener index (H΄). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m × 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of α-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three α-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance α-diversity against the extent of TSI in the community: (1 − GI) × D, and (1 − GI) × H'. These new indices were significantly correlated with the original D and H΄, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.