{"title":"Use of Corrosion Control Device to Control Reagent Water Treatment of Heating Networks","authors":"G. S. Vasyliev, Yu. S. Herasymenko","doi":"10.1007/s11003-023-00745-8","DOIUrl":null,"url":null,"abstract":"<p>Testing of the reagent method of water treatment with the use of corrosion control devices was performed at the district boiler house of Kyiv city. Corrosion rate probes were installed on the straight and return pipelines of the heating network, and on the feed line. The anti-scale efficiency of the reagent was determined by measuring the change in the hardness of water before and after the heating equipment. Corrosion monitoring showed that the corrosion rate in the heating network is maintained at 0.1 mm/year. The corrosion rate on the feed line due to reagent water treatment was reduced to 0.03 mm/year in non-deaerated water. The calculation of economic efficiency has shown that the reagent method of water treatment for heating networks is by 13% cheaper than traditional approach and can serve as an alternative to the traditional one, especially regarding energy conservation.</p>","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11003-023-00745-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Testing of the reagent method of water treatment with the use of corrosion control devices was performed at the district boiler house of Kyiv city. Corrosion rate probes were installed on the straight and return pipelines of the heating network, and on the feed line. The anti-scale efficiency of the reagent was determined by measuring the change in the hardness of water before and after the heating equipment. Corrosion monitoring showed that the corrosion rate in the heating network is maintained at 0.1 mm/year. The corrosion rate on the feed line due to reagent water treatment was reduced to 0.03 mm/year in non-deaerated water. The calculation of economic efficiency has shown that the reagent method of water treatment for heating networks is by 13% cheaper than traditional approach and can serve as an alternative to the traditional one, especially regarding energy conservation.
期刊介绍:
Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.