Alexander Khort , Tingru Chang , Jing Hua , Eva Blomberg , Tommy Cedervall , Inger Odnevall
{"title":"Eco-corona-mediated transformation of nano-sized Y2O3 in simulated freshwater: A short-term study","authors":"Alexander Khort , Tingru Chang , Jing Hua , Eva Blomberg , Tommy Cedervall , Inger Odnevall","doi":"10.1016/j.impact.2023.100490","DOIUrl":null,"url":null,"abstract":"<div><p>The use of metal and metal oxide nanomaterials (NMs) is experiencing a significant surge in popularity due to their distinctive structures and properties, making them highly attractive for a wide range of applications. This increases the risks of their potential negative impact on organisms if dispersed into the environment. Information about their behavior and transformation upon environmental interactions in aquatic settings is limited. In this study, the influence of naturally excreted biomolecules from the zooplankton <em>Daphnia magna</em> on nanosized Y<sub>2</sub>O<sub>3</sub> of different concentrations was systematically examined in synthetic freshwater in terms of adsorption and eco-corona formation, colloidal stability, transformation, dissolution, and ecotoxicity towards <em>D. magna</em>. The formation of an eco-corona on the surface of the Y<sub>2</sub>O<sub>3</sub> NMs leads to improved colloidal stability and a reduced extent of dissolution. Exposure to the Y<sub>2</sub>O<sub>3</sub> NMs lowered the survival probability of <em>D. magna</em> considerably. The ecotoxic potency was slightly reduced by the formation of the eco-corona, though shown to be particle concentration-specific. Overall, the results highlight the importance of systematic mechanistic and fundamental studies of factors that can affect the environmental fate and ecotoxic potency of NMs.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100490"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452074823000411/pdfft?md5=caf924e5c45c1ca793fea21d13b8bcdf&pid=1-s2.0-S2452074823000411-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074823000411","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The use of metal and metal oxide nanomaterials (NMs) is experiencing a significant surge in popularity due to their distinctive structures and properties, making them highly attractive for a wide range of applications. This increases the risks of their potential negative impact on organisms if dispersed into the environment. Information about their behavior and transformation upon environmental interactions in aquatic settings is limited. In this study, the influence of naturally excreted biomolecules from the zooplankton Daphnia magna on nanosized Y2O3 of different concentrations was systematically examined in synthetic freshwater in terms of adsorption and eco-corona formation, colloidal stability, transformation, dissolution, and ecotoxicity towards D. magna. The formation of an eco-corona on the surface of the Y2O3 NMs leads to improved colloidal stability and a reduced extent of dissolution. Exposure to the Y2O3 NMs lowered the survival probability of D. magna considerably. The ecotoxic potency was slightly reduced by the formation of the eco-corona, though shown to be particle concentration-specific. Overall, the results highlight the importance of systematic mechanistic and fundamental studies of factors that can affect the environmental fate and ecotoxic potency of NMs.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.