Forward-Looking Study of Solar Maximum Impact in 2025: Effects of Satellite Navigation Failure on Aviation Network Operation in the Greater Bay Area, China
{"title":"Forward-Looking Study of Solar Maximum Impact in 2025: Effects of Satellite Navigation Failure on Aviation Network Operation in the Greater Bay Area, China","authors":"Dabin Xue, Jian Yang, Zhizhao Liu, Wei Cong","doi":"10.1029/2023sw003678","DOIUrl":null,"url":null,"abstract":"Satellite navigation based on the Global Navigation Satellite System can provide aircraft with more precise guidance and increase flight efficiency. However, severe space weather events can cause satellite navigation failure due to the dramatic increase in total electron content and irregularities in the ionosphere. Consequently, ground navigation has to be used to replace satellite navigation, increasing aircraft separation standards and reducing airspace capacity. As a result, numerous flights may be delayed or even canceled, incurring significant financial losses. The occurrence peak of space weather events generally coincides with the 11-year-cycle solar maximum, and 2025 is expected to be the upcoming solar maximum. The Greater Bay Area (GBA), located in the equatorial ionization anomaly region of China, is particularly vulnerable to space weather impacts. To explore the effects of satellite navigation failure on flight operation, we conduct this looking-forward study and propose solution methods from the standpoint of Air Traffic Management, by simulating satellite navigation failure scenarios. Based on the projected flight volume in 2025 related to the GBA airports, simulation results show that the economic costs can be tens of millions of Euros, which is dependent on the duration of satellite navigation failure and the time interval of ground navigation-based landing. We believe that this study can be a benchmark for evaluating the potential economic effects of forthcoming space weather on flight operations.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003678","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite navigation based on the Global Navigation Satellite System can provide aircraft with more precise guidance and increase flight efficiency. However, severe space weather events can cause satellite navigation failure due to the dramatic increase in total electron content and irregularities in the ionosphere. Consequently, ground navigation has to be used to replace satellite navigation, increasing aircraft separation standards and reducing airspace capacity. As a result, numerous flights may be delayed or even canceled, incurring significant financial losses. The occurrence peak of space weather events generally coincides with the 11-year-cycle solar maximum, and 2025 is expected to be the upcoming solar maximum. The Greater Bay Area (GBA), located in the equatorial ionization anomaly region of China, is particularly vulnerable to space weather impacts. To explore the effects of satellite navigation failure on flight operation, we conduct this looking-forward study and propose solution methods from the standpoint of Air Traffic Management, by simulating satellite navigation failure scenarios. Based on the projected flight volume in 2025 related to the GBA airports, simulation results show that the economic costs can be tens of millions of Euros, which is dependent on the duration of satellite navigation failure and the time interval of ground navigation-based landing. We believe that this study can be a benchmark for evaluating the potential economic effects of forthcoming space weather on flight operations.