First-principles simulation of optical emission spectra for low-pressure argon plasmas and its experimental validation

Fatima Jenina Arellano, Márton Gyulai, Zoltán Donkó, Peter Hartmann, Tsanko V Tsankov, Uwe Czarnetzki, Satoshi Hamaguchi
{"title":"First-principles simulation of optical emission spectra for low-pressure argon plasmas and its experimental validation","authors":"Fatima Jenina Arellano, Márton Gyulai, Zoltán Donkó, Peter Hartmann, Tsanko V Tsankov, Uwe Czarnetzki, Satoshi Hamaguchi","doi":"10.1088/1361-6595/ad0ede","DOIUrl":null,"url":null,"abstract":"Various spectral line emissions are often used for the experimental characterization of low-temperature plasmas. For a better understanding of the relation between the plasma characteristics and optical emission spectra, first-principle numerical simulations for low-pressure radio-frequency driven capacitively-coupled plasmas (CCPs) of argon have been performed by coupling one-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) simulations with a global collisional-radiative model (CRM). The only ionization and excitation mechanisms included in the PIC/MCC simulations of this study are the electron-impact ionization and excitations of the ground-state Ar atoms, as done commonly, whereas the electron-impact ionization of metastable states and other ionization mechanisms are also included in the CRM to account for the optical emission spectra. The PIC/MCC coupled CRM provides the emission spectra, which are then compared with experimental data obtained from the corresponding Ar CCPs with a gas pressure ranging from 2 Pa to 100 Pa. The comparison has shown good agreement for pressures up to about 20 Pa but increasingly notable deviations at higher pressures. The deviation is ascribed to the missing consistency between the PIC/MCC simulations and CRM at higher pressures, where the ionization from the metastable states is more dominant than that from the ground states, indicating a significant change in the electron energy distribution function due to the electron collisions with excited Ar atoms at higher pressures.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad0ede","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various spectral line emissions are often used for the experimental characterization of low-temperature plasmas. For a better understanding of the relation between the plasma characteristics and optical emission spectra, first-principle numerical simulations for low-pressure radio-frequency driven capacitively-coupled plasmas (CCPs) of argon have been performed by coupling one-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) simulations with a global collisional-radiative model (CRM). The only ionization and excitation mechanisms included in the PIC/MCC simulations of this study are the electron-impact ionization and excitations of the ground-state Ar atoms, as done commonly, whereas the electron-impact ionization of metastable states and other ionization mechanisms are also included in the CRM to account for the optical emission spectra. The PIC/MCC coupled CRM provides the emission spectra, which are then compared with experimental data obtained from the corresponding Ar CCPs with a gas pressure ranging from 2 Pa to 100 Pa. The comparison has shown good agreement for pressures up to about 20 Pa but increasingly notable deviations at higher pressures. The deviation is ascribed to the missing consistency between the PIC/MCC simulations and CRM at higher pressures, where the ionization from the metastable states is more dominant than that from the ground states, indicating a significant change in the electron energy distribution function due to the electron collisions with excited Ar atoms at higher pressures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低压氩等离子体光发射光谱的第一原理模拟及其实验验证
低温等离子体的实验表征通常使用各种光谱线发射。为了更好地理解等离子体特性与光学发射光谱之间的关系,通过将一维粒子入胞/蒙特卡洛碰撞(PIC/MCC)模拟与全局碰撞辐射模型(CRM)相结合,对氩的低压射频驱动电容耦合等离子体(CCPs)进行了第一原理数值模拟。本研究的 PIC/MCC 模拟只包括基态氩原子的电子撞击电离和激发机制,这也是常用的方法,而在 CRM 中还包括了逸散态的电子撞击电离和其他电离机制,以解释光学发射光谱。PIC/MCC 耦合 CRM 提供了发射光谱,然后将其与从相应的氩气 CCP(气体压力范围为 2 Pa 至 100 Pa)中获得的实验数据进行比较。比较结果表明,在最高约 20 Pa 的压力下,两者的一致性很好,但在更高压力下,偏差越来越明显。出现偏差的原因是 PIC/MCC 模拟与 CRM 在较高压力下的一致性缺失,在较高压力下,来自逸散态的电离比来自基态的电离更主要,这表明在较高压力下电子与激发的 Ar 原子碰撞导致电子能量分布函数发生了显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1