Guilherme Barbosa de Almeida, Elisangela Martins de Sá, Sérgio Ricardo de Souza, Marcone Jamilson Freitas Souza
{"title":"A hybrid iterated local search matheuristic for large-scale single source capacitated facility location problems","authors":"Guilherme Barbosa de Almeida, Elisangela Martins de Sá, Sérgio Ricardo de Souza, Marcone Jamilson Freitas Souza","doi":"10.1007/s10732-023-09524-9","DOIUrl":null,"url":null,"abstract":"<p>The Single Source Capacitated Facility Location Problem (SSCFLP) consists of determining locations for facilities to meet customer demands so that each customer must be served by a single facility. This paper proposes a matheuristic algorithm for solving large-scale SSCFLP instances that combines neighborhood-based heuristic procedures with the solution of two binary linear programming sub-problems through a general-purpose solver. The proposed algorithm starts from the optimal solution of the linear relaxation of the SSCFLP to reduce its size and identify promising potential locations for opening facilities. Computational experiments were performed on two benchmark sets of large instances. For one of them, the developed algorithm obtained optimal solutions for all instances. For the other set, it provided average relative deviations slightly lower than those of three relevant algorithms from the literature. These results allow us to conclude that the proposed algorithm generates good-quality solutions and is competitive in solving large-scale SSCFLP instances.</p>","PeriodicalId":54810,"journal":{"name":"Journal of Heuristics","volume":"44 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heuristics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10732-023-09524-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Single Source Capacitated Facility Location Problem (SSCFLP) consists of determining locations for facilities to meet customer demands so that each customer must be served by a single facility. This paper proposes a matheuristic algorithm for solving large-scale SSCFLP instances that combines neighborhood-based heuristic procedures with the solution of two binary linear programming sub-problems through a general-purpose solver. The proposed algorithm starts from the optimal solution of the linear relaxation of the SSCFLP to reduce its size and identify promising potential locations for opening facilities. Computational experiments were performed on two benchmark sets of large instances. For one of them, the developed algorithm obtained optimal solutions for all instances. For the other set, it provided average relative deviations slightly lower than those of three relevant algorithms from the literature. These results allow us to conclude that the proposed algorithm generates good-quality solutions and is competitive in solving large-scale SSCFLP instances.
期刊介绍:
The Journal of Heuristics provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly. It fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems. It considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.
The journal presents practical applications, theoretical developments, decision analysis models that consider issues of rational decision making with limited information, artificial intelligence-based heuristics applied to a wide variety of problems, learning paradigms, and computational experimentation.
Officially cited as: J Heuristics
Provides a forum for advancing the state-of-the-art in the theory and practical application of techniques for solving problems approximately that cannot be solved exactly.
Fosters the development, understanding, and practical use of heuristic solution techniques for solving business, engineering, and societal problems.
Considers the importance of theoretical, empirical, and experimental work related to the development of heuristics.