Bayesian Reconciliation of Return Predictability

Borys Koval, Sylvia Frühwirth-Schnatter, Leopold Sögner
{"title":"Bayesian Reconciliation of Return Predictability","authors":"Borys Koval, Sylvia Frühwirth-Schnatter, Leopold Sögner","doi":"10.1515/snde-2022-0110","DOIUrl":null,"url":null,"abstract":"This article considers a stable vector autoregressive (VAR) model and investigates return predictability in a Bayesian context. The bivariate VAR system comprises asset returns and a further prediction variable, such as the dividend-price ratio, and allows pinning down the question of return predictability to the value of one particular model parameter. We develop a new shrinkage type prior for this parameter and compare our Bayesian approach to ordinary least squares estimation and to the reduced-bias estimator proposed in Amihud and Hurvich (2004. “Predictive Regressions: A Reduced-Bias Estimation Method.” <jats:italic>Journal of Financial and Quantitative Analysis</jats:italic> 39: 813–41). A simulation study shows that the Bayesian approach dominates the reduced-bias estimator in terms of observed size (false positive) and power (false negative). We apply our methodology to a system comprising annual CRSP value-weighted returns running, respectively, from 1926 to 2004 and from 1953 to 2021, and the logarithmic dividend-price ratio. For the first sample, the Bayesian approach supports the hypothesis of no return predictability, while for the second data set weak evidence for predictability is observed. Then, instead of the dividend-price ratio, some prediction variables proposed in Welch and Goyal (2008. “A Comprehensive Look at the Empirical Performance of Equity Premium Prediction.” <jats:italic>Review of Financial Studies</jats:italic> 21: 1455–508) are used. Also with these prediction variables, only weak evidence for return predictability is supported by Bayesian testing. These results are corroborated with an out-of-sample forecasting analysis.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2022-0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers a stable vector autoregressive (VAR) model and investigates return predictability in a Bayesian context. The bivariate VAR system comprises asset returns and a further prediction variable, such as the dividend-price ratio, and allows pinning down the question of return predictability to the value of one particular model parameter. We develop a new shrinkage type prior for this parameter and compare our Bayesian approach to ordinary least squares estimation and to the reduced-bias estimator proposed in Amihud and Hurvich (2004. “Predictive Regressions: A Reduced-Bias Estimation Method.” Journal of Financial and Quantitative Analysis 39: 813–41). A simulation study shows that the Bayesian approach dominates the reduced-bias estimator in terms of observed size (false positive) and power (false negative). We apply our methodology to a system comprising annual CRSP value-weighted returns running, respectively, from 1926 to 2004 and from 1953 to 2021, and the logarithmic dividend-price ratio. For the first sample, the Bayesian approach supports the hypothesis of no return predictability, while for the second data set weak evidence for predictability is observed. Then, instead of the dividend-price ratio, some prediction variables proposed in Welch and Goyal (2008. “A Comprehensive Look at the Empirical Performance of Equity Premium Prediction.” Review of Financial Studies 21: 1455–508) are used. Also with these prediction variables, only weak evidence for return predictability is supported by Bayesian testing. These results are corroborated with an out-of-sample forecasting analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回报可预测性的贝叶斯调节法
本文考虑了一个稳定的向量自回归(VAR)模型,并研究了贝叶斯背景下的回报可预测性。双变量 VAR 系统包括资产回报率和另一个预测变量(如股息价格比),可将回报率可预测性问题归结为一个特定模型参数的值。我们为该参数开发了一种新的收缩先验类型,并将我们的贝叶斯方法与普通最小二乘法估计法以及 Amihud 和 Hurvich(2004 年)提出的减少偏差估计法进行了比较。"预测回归:一种减少偏差的估计方法"。金融与定量分析期刊》39:813-41)中提出的减少偏差估计方法。一项模拟研究表明,贝叶斯方法在观察到的规模(假阳性)和功率(假阴性)方面均优于减偏估计法。我们将我们的方法应用于一个系统,该系统包括分别从 1926 年到 2004 年和从 1953 年到 2021 年的 CRSP 年度价值加权收益率,以及对数股息价格比。对于第一个样本,贝叶斯方法支持收益率不可预测性的假设,而对于第二个数据集,则观察到可预测性的微弱证据。然后,Welch 和 Goyal(2008 年)提出的一些预测变量代替了股息价格比。"股票溢价预测实证表现的全面观察"。Review of Financial Studies 21: 1455-508)中提出的一些预测变量。同样是使用这些预测变量,贝叶斯测试仅支持回报率可预测性的微弱证据。样本外预测分析证实了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1