On Turbulent Helicity in the Surface Layer of the Atmosphere

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Izvestiya Atmospheric and Oceanic Physics Pub Date : 2023-12-25 DOI:10.1134/s0001433823060117
O. A. Solenaya, E. A. Shishov, O. G. Chkhetiani, G. V. Azizyan, V. M. Koprov
{"title":"On Turbulent Helicity in the Surface Layer of the Atmosphere","authors":"O. A. Solenaya, E. A. Shishov, O. G. Chkhetiani, G. V. Azizyan, V. M. Koprov","doi":"10.1134/s0001433823060117","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Synchronous measurements of vorticity and velocity in the boundary layer of the atmosphere were carried out using the original three-component acoustic circulator developed at the Obukhov Institute of Physical Physics (IAP) in 2019–2020. The measurements were carried out in summer at the Tsimlyansk scientific station (in 2021 and 2022) at heights of 1.75 and 30 m. For different realizations, turbulent helicity has negative values on average, which is possibly due to the presence of local (breeze) winds. The spectra of turbulent helicity exhibit a slope close to –5/3, which corresponds to the transfer of helicity along the spectrum towards small scales (direct cascade). Spectrum slopes of –4/3 are also observed, as well as, in the low-frequency region, –1, associated with the convective component, wind shear, and submesoscale structures. The components of the turbulent vortex flow are calculated. The helicity values agree with the previously measured and theoretical estimates obtained for neutral conditions.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823060117","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Synchronous measurements of vorticity and velocity in the boundary layer of the atmosphere were carried out using the original three-component acoustic circulator developed at the Obukhov Institute of Physical Physics (IAP) in 2019–2020. The measurements were carried out in summer at the Tsimlyansk scientific station (in 2021 and 2022) at heights of 1.75 and 30 m. For different realizations, turbulent helicity has negative values on average, which is possibly due to the presence of local (breeze) winds. The spectra of turbulent helicity exhibit a slope close to –5/3, which corresponds to the transfer of helicity along the spectrum towards small scales (direct cascade). Spectrum slopes of –4/3 are also observed, as well as, in the low-frequency region, –1, associated with the convective component, wind shear, and submesoscale structures. The components of the turbulent vortex flow are calculated. The helicity values agree with the previously measured and theoretical estimates obtained for neutral conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论大气表层的湍流螺旋性
摘要2019-2020年,利用奥布霍夫物理研究所(IAP)开发的原始三分量声学循环器对大气边界层的涡度和速度进行了同步测量。在不同的实际情况下,湍流螺旋率平均为负值,这可能是由于当地(微风)风的存在。湍流螺旋度频谱的斜率接近-5/3,相当于螺旋度沿频谱向小尺度转移(直接级联)。此外,还观测到-4/3 的频谱斜率,以及在低频区域与对流成分、风切变和次中尺度结构相关的-1 的频谱斜率。计算了湍流涡流的成分。螺旋度值与之前在中性条件下测量和理论估算的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
期刊最新文献
Bayesian Estimates of Changes in Russian River Runoff in the 21st Century Based on the CMIP6 Ensemble Model Simulations Natural Sinks and Sources of CO2 and CH4 in the Atmosphere of Russian Regions and Their Contribution to Climate Change in the 21st Century Evaluated with the CMIP6 Model Ensemble Influence of Modeling Conditions on the Estimation of the Dry Deposition Velocity of Aerosols on Highly Inhomogeneous Surfaces Dynamics of Air Temperature Changes in the Atmospheric Boundary Layer during the Solar Eclipse of March 29, 2006 Analysis of Noctilucent Cloud Fields According to Ground-Based Network and Airborne Photography Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1