Asymptotics of the Cauchy Problem for the One-Dimensional Schrödinger Equation with Rapidly Oscillating Initial Data and Small Addition to the Smooth Potential
{"title":"Asymptotics of the Cauchy Problem for the One-Dimensional Schrödinger Equation with Rapidly Oscillating Initial Data and Small Addition to the Smooth Potential","authors":"S. Yu. Dobrokhotov","doi":"10.1134/S1061920823040052","DOIUrl":null,"url":null,"abstract":"<p> We study the asymptotic solution of the Cauchy problem with rapidly changing initial data for the one-dimensional nonstationary Schrödinger equation with a smooth potential perturbed by a small rapidly oscillating addition. Solutions to such a Cauchy problem are described by moving, rapidly oscillating wave packets. According to long-standing results of V.S. Buslaev and S.Yu. Dobrokhotov, the construction of a solution to this problem can be constructed applying the sequential use of the adiabatic and semiclassical approximations. In the general situation, the construction the asymptotic formula reduces to solving a large number of auxiliary spectral problems for families of Bloch functions of ordinary differential operators of Sturm–Liouville type, and the answer is presented in an ineffective form. On the other hand, the assumption that the rapidly oscillating perturbation of the potential is small gives the opportunity, firstly, to write asymptotic formulas for solutions of the indicated auxiliary spectral problems and, secondly, to save, in the construction of the answer to the original problem, only finitely many these problems and their solutions. Bounds are obtained for problem parameters answering when such considerations can be implemented and, if the corresponding conditions on the parameters are satisfied, asymptotic solutions are constructed. </p><p> <b> DOI</b> 10.1134/S1061920823040052 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 4","pages":"466 - 479"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823040052","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study the asymptotic solution of the Cauchy problem with rapidly changing initial data for the one-dimensional nonstationary Schrödinger equation with a smooth potential perturbed by a small rapidly oscillating addition. Solutions to such a Cauchy problem are described by moving, rapidly oscillating wave packets. According to long-standing results of V.S. Buslaev and S.Yu. Dobrokhotov, the construction of a solution to this problem can be constructed applying the sequential use of the adiabatic and semiclassical approximations. In the general situation, the construction the asymptotic formula reduces to solving a large number of auxiliary spectral problems for families of Bloch functions of ordinary differential operators of Sturm–Liouville type, and the answer is presented in an ineffective form. On the other hand, the assumption that the rapidly oscillating perturbation of the potential is small gives the opportunity, firstly, to write asymptotic formulas for solutions of the indicated auxiliary spectral problems and, secondly, to save, in the construction of the answer to the original problem, only finitely many these problems and their solutions. Bounds are obtained for problem parameters answering when such considerations can be implemented and, if the corresponding conditions on the parameters are satisfied, asymptotic solutions are constructed.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.