Session-based recommendation by exploiting substitutable and complementary relationships from multi-behavior data

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data Mining and Knowledge Discovery Pub Date : 2023-12-26 DOI:10.1007/s10618-023-00994-w
Huizi Wu, Cong Geng, Hui Fang
{"title":"Session-based recommendation by exploiting substitutable and complementary relationships from multi-behavior data","authors":"Huizi Wu, Cong Geng, Hui Fang","doi":"10.1007/s10618-023-00994-w","DOIUrl":null,"url":null,"abstract":"<p>Session-based recommendation (SR) aims to dynamically recommend items to a user based on a sequence of the most recent user-item interactions. Most existing studies on SR adopt advanced deep learning methods. However, the majority only consider a special behavior type (e.g., click), while those few considering multi-typed behaviors ignore to take full advantage of the relationships between products (items). In this case, the paper proposes a novel approach, called Substitutable and Complementary Relationships from Multi-behavior Data (denoted as SCRM) to better explore the relationships between products for effective recommendation. Specifically, we firstly construct substitutable and complementary graphs based on a user’s sequential behaviors in every session by jointly considering ‘click’ and ‘purchase’ behaviors. We then design a denoising network to remove false relationships, and further consider constraints on the two relationships via a particularly designed loss function. Extensive experiments on two e-commerce datasets demonstrate the superiority of our model over state-of-the-art methods, and the effectiveness of every component in SCRM.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-023-00994-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Session-based recommendation (SR) aims to dynamically recommend items to a user based on a sequence of the most recent user-item interactions. Most existing studies on SR adopt advanced deep learning methods. However, the majority only consider a special behavior type (e.g., click), while those few considering multi-typed behaviors ignore to take full advantage of the relationships between products (items). In this case, the paper proposes a novel approach, called Substitutable and Complementary Relationships from Multi-behavior Data (denoted as SCRM) to better explore the relationships between products for effective recommendation. Specifically, we firstly construct substitutable and complementary graphs based on a user’s sequential behaviors in every session by jointly considering ‘click’ and ‘purchase’ behaviors. We then design a denoising network to remove false relationships, and further consider constraints on the two relationships via a particularly designed loss function. Extensive experiments on two e-commerce datasets demonstrate the superiority of our model over state-of-the-art methods, and the effectiveness of every component in SCRM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多行为数据中的可替代和互补关系,进行基于会话的推荐
基于会话的推荐(SR)旨在根据用户与物品最近的交互序列向用户动态推荐物品。关于会话推荐的现有研究大多采用先进的深度学习方法。然而,大多数研究只考虑了一种特殊的行为类型(如点击),而少数考虑多类型行为的研究则忽略了充分利用产品(项目)之间的关系。在这种情况下,本文提出了一种名为 "多行为数据中的可替代和互补关系"(Substitutable and Complementary Relationships from Multi-behavior Data,简称 SCRM)的新方法,以更好地探索产品之间的关系,从而实现有效的推荐。具体来说,我们首先通过联合考虑 "点击 "和 "购买 "行为,根据用户在每个会话中的连续行为构建可替代和互补图。然后,我们设计了一个去噪网络来去除虚假关系,并通过一个特别设计的损失函数进一步考虑对这两种关系的约束。在两个电子商务数据集上进行的广泛实验证明了我们的模型优于最先进的方法,以及 SCRM 中每个组件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
期刊最新文献
FRUITS: feature extraction using iterated sums for time series classification Bounding the family-wise error rate in local causal discovery using Rademacher averages Evaluating the disclosure risk of anonymized documents via a machine learning-based re-identification attack Efficient learning with projected histograms Opinion dynamics in social networks incorporating higher-order interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1