The Role of Atmospheric Circulation Changes in the Increasing Frequency of Summer Droughts in European Russia

IF 0.6 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Russian Meteorology and Hydrology Pub Date : 2023-12-28 DOI:10.3103/s1068373923090042
E. A. Cherenkova
{"title":"The Role of Atmospheric Circulation Changes in the Increasing Frequency of Summer Droughts in European Russia","authors":"E. A. Cherenkova","doi":"10.3103/s1068373923090042","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>According to the Standardized Precipitation Evapotranspiration Index (SPEI), most extensive summer droughts in European Russia south of 55° N in 1950–2021 were observed during the extremely negative phases of the Eastern Atlantic/Western Russia (EAWR) and West Pacific (WP) atmospheric circulation patterns characterized by abnormal high atmospheric pressure and an increased frequency of the number of days with atmospheric blocking over European Russia. It is shown that the frequency of droughts in the study area in the years of the negative phases of both circulation indices and their extremes in the summer months as compared to other years was higher by five droughts per decade in the Volga and Central Chernozem regions and by three droughts per decade in the northwestern Caspian region. A statistically significant correlation was found between the EAWR in summer and the multidecadal variability of sea surface temperature in the North Atlantic. It was revealed that the increase in the drought frequency in the study area in recent decades has been caused by the restructuring of atmospheric circulation in the Euro-Atlantic sector accompanying the transition of the Atlantic Multidecadal Oscillation (AMO) to a positive phase. An increase in the stability of the EAWR and WP atmospheric circulation patterns was observed, as well as a related significant increase in the frequency of extensive droughts in the study area in 2010–2021. They were accompanied by the weakening of zonal atmospheric circulation in the Northern Hemisphere, the combination of the positive AMO phase and the effects of anthropogenic warming on the atmospheric circulation in the Northern Hemisphere, including those associated with blocking events.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373923090042","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

According to the Standardized Precipitation Evapotranspiration Index (SPEI), most extensive summer droughts in European Russia south of 55° N in 1950–2021 were observed during the extremely negative phases of the Eastern Atlantic/Western Russia (EAWR) and West Pacific (WP) atmospheric circulation patterns characterized by abnormal high atmospheric pressure and an increased frequency of the number of days with atmospheric blocking over European Russia. It is shown that the frequency of droughts in the study area in the years of the negative phases of both circulation indices and their extremes in the summer months as compared to other years was higher by five droughts per decade in the Volga and Central Chernozem regions and by three droughts per decade in the northwestern Caspian region. A statistically significant correlation was found between the EAWR in summer and the multidecadal variability of sea surface temperature in the North Atlantic. It was revealed that the increase in the drought frequency in the study area in recent decades has been caused by the restructuring of atmospheric circulation in the Euro-Atlantic sector accompanying the transition of the Atlantic Multidecadal Oscillation (AMO) to a positive phase. An increase in the stability of the EAWR and WP atmospheric circulation patterns was observed, as well as a related significant increase in the frequency of extensive droughts in the study area in 2010–2021. They were accompanied by the weakening of zonal atmospheric circulation in the Northern Hemisphere, the combination of the positive AMO phase and the effects of anthropogenic warming on the atmospheric circulation in the Northern Hemisphere, including those associated with blocking events.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气环流变化在俄罗斯欧洲夏季干旱日益频繁中的作用
摘要根据标准化降水蒸散指数(SPEI),1950-2021 年北纬 55 度以南的欧洲俄罗斯夏季干旱最为严重,发生在东大西洋/俄罗斯西部(EAWR)和西太平洋(WP)大气环流模式的极端负相期间,其特点是大气压异常高,欧洲俄罗斯上空的大气阻塞日数频率增加。研究表明,在这两种环流指数出现负值阶段的年份,以及在夏季出现极值的年份,研究地区的干旱频率与其他年份相比,伏尔加河和切尔诺泽姆中部地区每十年高出五次,里海西北部地区每十年高出三次。在统计上发现,夏季 EAWR 与北大西洋海面温度的十年多变性之间存在明显的相关性。研究表明,近几十年来研究地区干旱频率增加的原因是,随着大西洋多年代涛动(AMO)向正相过渡,欧洲-大西洋扇区的大气环流发生了结构调整。据观测,2010-2021 年,欧洲-大西洋大气环流和西太平洋大气环流模式的稳定性有所增强,研究地区大范围干旱的频率也相应显著增加。与此同时,北半球地带性大气环流减弱,AMO 正相位与人为变暖对北半球大气环流的影响相结合,包括与阻塞事件相关的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
期刊最新文献
Extreme Heat Waves and Extreme Summer Seasons in European Russia Influence of the Summer Changes in Large-scale Atmospheric Circulation on the Vertical Fluxes of Heat and Moisture in Russian Landscape Zones Variational Assimilation of the SMAP Surface Soil Moisture Retrievals into an Integrated Urban Land Model Features of the Thermal Regime of the Middle Atmosphere over Western Siberia from the Data of Many-year Lidar Monitoring Analysis of the Variations in the Lightning Activity of a Hail Process (August 19, 2015, the North Caucasus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1