Proton imaging of high-energy-density laboratory plasmas

IF 45.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reviews of Modern Physics Pub Date : 2023-12-28 DOI:10.1103/revmodphys.95.045007
Derek B. Schaeffer, Archie F. A. Bott, Marco Borghesi, Kirk A. Flippo, William Fox, Julien Fuchs, Chikang Li, Fredrick H. Séguin, Hye-Sook Park, Petros Tzeferacos, Louise Willingale
{"title":"Proton imaging of high-energy-density laboratory plasmas","authors":"Derek B. Schaeffer, Archie F. A. Bott, Marco Borghesi, Kirk A. Flippo, William Fox, Julien Fuchs, Chikang Li, Fredrick H. Séguin, Hye-Sook Park, Petros Tzeferacos, Louise Willingale","doi":"10.1103/revmodphys.95.045007","DOIUrl":null,"url":null,"abstract":"Proton imaging has become a key diagnostic for measuring electromagnetic fields in high-energy-density (HED) laboratory plasmas. Compared to other techniques for diagnosing fields, proton imaging is a measurement that can simultaneously offer high spatial and temporal resolution and the ability to distinguish between electric and magnetic fields without the protons perturbing the plasma of interest. Consequently, proton imaging has been used in a wide range of HED experiments, from inertial-confinement fusion to laboratory astrophysics. An overview is provided on the state of the art of proton imaging, including a discussion of experimental considerations like proton sources and detectors, the theory of proton-imaging analysis, and a survey of experimental results demonstrating the breadth of applications. Topics at the frontiers of proton-imaging development are also described, along with an outlook on the future of the field.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"9 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.95.045007","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proton imaging has become a key diagnostic for measuring electromagnetic fields in high-energy-density (HED) laboratory plasmas. Compared to other techniques for diagnosing fields, proton imaging is a measurement that can simultaneously offer high spatial and temporal resolution and the ability to distinguish between electric and magnetic fields without the protons perturbing the plasma of interest. Consequently, proton imaging has been used in a wide range of HED experiments, from inertial-confinement fusion to laboratory astrophysics. An overview is provided on the state of the art of proton imaging, including a discussion of experimental considerations like proton sources and detectors, the theory of proton-imaging analysis, and a survey of experimental results demonstrating the breadth of applications. Topics at the frontiers of proton-imaging development are also described, along with an outlook on the future of the field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能量密度实验室等离子体的质子成像
质子成像已成为测量高能量密度(HED)实验室等离子体中电磁场的关键诊断方法。与其他诊断场的技术相比,质子成像测量可同时提供高空间和时间分辨率,并能在质子不扰动相关等离子体的情况下区分电场和磁场。因此,质子成像已被广泛应用于从惯性约束聚变到实验室天体物理学的各种高能电场实验中。本文概述了质子成像技术的现状,包括质子源和探测器等实验考虑因素的讨论、质子成像分析理论,以及展示广泛应用的实验结果概览。此外,还介绍了质子成像发展的前沿课题,并对该领域的未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews of Modern Physics
Reviews of Modern Physics 物理-物理:综合
CiteScore
76.20
自引率
0.70%
发文量
30
期刊介绍: Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.
期刊最新文献
Wannier-function software ecosystem for materials simulations 𝒫𝒯-symmetric quantum mechanics Colloquium: Inclusions, boundaries, and disorder in scalar active matter FLASH: New intersection of physics, chemistry, biology, and cancer medicine Nobel Lecture: Sub-atomic motions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1