Derek B. Schaeffer, Archie F. A. Bott, Marco Borghesi, Kirk A. Flippo, William Fox, Julien Fuchs, Chikang Li, Fredrick H. Séguin, Hye-Sook Park, Petros Tzeferacos, Louise Willingale
{"title":"Proton imaging of high-energy-density laboratory plasmas","authors":"Derek B. Schaeffer, Archie F. A. Bott, Marco Borghesi, Kirk A. Flippo, William Fox, Julien Fuchs, Chikang Li, Fredrick H. Séguin, Hye-Sook Park, Petros Tzeferacos, Louise Willingale","doi":"10.1103/revmodphys.95.045007","DOIUrl":null,"url":null,"abstract":"Proton imaging has become a key diagnostic for measuring electromagnetic fields in high-energy-density (HED) laboratory plasmas. Compared to other techniques for diagnosing fields, proton imaging is a measurement that can simultaneously offer high spatial and temporal resolution and the ability to distinguish between electric and magnetic fields without the protons perturbing the plasma of interest. Consequently, proton imaging has been used in a wide range of HED experiments, from inertial-confinement fusion to laboratory astrophysics. An overview is provided on the state of the art of proton imaging, including a discussion of experimental considerations like proton sources and detectors, the theory of proton-imaging analysis, and a survey of experimental results demonstrating the breadth of applications. Topics at the frontiers of proton-imaging development are also described, along with an outlook on the future of the field.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"9 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.95.045007","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Proton imaging has become a key diagnostic for measuring electromagnetic fields in high-energy-density (HED) laboratory plasmas. Compared to other techniques for diagnosing fields, proton imaging is a measurement that can simultaneously offer high spatial and temporal resolution and the ability to distinguish between electric and magnetic fields without the protons perturbing the plasma of interest. Consequently, proton imaging has been used in a wide range of HED experiments, from inertial-confinement fusion to laboratory astrophysics. An overview is provided on the state of the art of proton imaging, including a discussion of experimental considerations like proton sources and detectors, the theory of proton-imaging analysis, and a survey of experimental results demonstrating the breadth of applications. Topics at the frontiers of proton-imaging development are also described, along with an outlook on the future of the field.
期刊介绍:
Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.