Seyed Ali Mousavi-Aghdas, Ebrahim Farashi, Nasim Naderi
{"title":"Iron Dyshomeostasis and Mitochondrial Function in the Failing Heart: A Review of the Literature","authors":"Seyed Ali Mousavi-Aghdas, Ebrahim Farashi, Nasim Naderi","doi":"10.1007/s40256-023-00619-z","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiac contraction and relaxation require a substantial amount of energy provided by the mitochondria. The failing heart is adenosine triphosphate (ATP)- and creatine-depleted. Studies have found iron is involved in almost every aspect of mitochondrial function, and previous studies have shown myocardial iron deficiency in heart failure (HF). Many clinicians advocated intravenous iron repletion for HF patients meeting the conventional criteria for systemic iron deficiency. While clinical trials showed improved quality of life, iron repletion failed to significantly impact survival or significant cardiovascular adverse events. There is evidence that in HF, labile iron is trapped inside the mitochondria causing oxidative stress and lipid peroxidation. There is also compelling preclinical evidence demonstrating the detrimental effects of both iron overload and depletion on cardiomyocyte function. We reviewed the mechanisms governing myocardial and mitochondrial iron content. Mitochondrial dynamics (i.e., fusion, fission, mitophagy) and the role of iron were also investigated. Ferroptosis, as an important regulated cell death mechanism involved in cardiomyocyte loss, was reviewed along with agents used to manipulate it. The membrane stability and iron content of mitochondria can be altered by many agents. Some studies are showing promising improvement in the cardiomyocyte function after iron chelation by deferiprone; however, whether the in vitro and in vivo findings will be reflected on on clinical grounds is still unclear. Finally, we briefly reviewed the clinical trials on intravenous iron repletion. There is a need for more well-simulated animal studies to shed light on the safety and efficacy of chelation agents and pave the road for clinical studies.</p></div>","PeriodicalId":7652,"journal":{"name":"American Journal of Cardiovascular Drugs","volume":"24 1","pages":"19 - 37"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Cardiovascular Drugs","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s40256-023-00619-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac contraction and relaxation require a substantial amount of energy provided by the mitochondria. The failing heart is adenosine triphosphate (ATP)- and creatine-depleted. Studies have found iron is involved in almost every aspect of mitochondrial function, and previous studies have shown myocardial iron deficiency in heart failure (HF). Many clinicians advocated intravenous iron repletion for HF patients meeting the conventional criteria for systemic iron deficiency. While clinical trials showed improved quality of life, iron repletion failed to significantly impact survival or significant cardiovascular adverse events. There is evidence that in HF, labile iron is trapped inside the mitochondria causing oxidative stress and lipid peroxidation. There is also compelling preclinical evidence demonstrating the detrimental effects of both iron overload and depletion on cardiomyocyte function. We reviewed the mechanisms governing myocardial and mitochondrial iron content. Mitochondrial dynamics (i.e., fusion, fission, mitophagy) and the role of iron were also investigated. Ferroptosis, as an important regulated cell death mechanism involved in cardiomyocyte loss, was reviewed along with agents used to manipulate it. The membrane stability and iron content of mitochondria can be altered by many agents. Some studies are showing promising improvement in the cardiomyocyte function after iron chelation by deferiprone; however, whether the in vitro and in vivo findings will be reflected on on clinical grounds is still unclear. Finally, we briefly reviewed the clinical trials on intravenous iron repletion. There is a need for more well-simulated animal studies to shed light on the safety and efficacy of chelation agents and pave the road for clinical studies.
期刊介绍:
Promoting rational therapy within the discipline of cardiology, the American Journal of Cardiovascular Drugs covers all aspects of the treatment of cardiovascular disorders, particularly the place in therapy of newer and established agents.
Via a program of reviews and original clinical research articles, the journal addresses major issues relating to treatment of these disorders, including the pharmacology, efficacy and adverse effects of the major classes of drugs; information on newly developed drugs and drug classes; the therapeutic implications of latest research into the aetiology of cardiovascular disorders; and the practical management of specific clinical situations.
The American Journal of Cardiovascular Drugs offers a range of additional enhanced features designed to increase the visibility, readership and educational value of the journal’s content. Each article is accompanied by a Key Points summary, giving a time-efficient overview of the content to a wide readership. Articles may be accompanied by plain language summaries to assist patients, caregivers and others in understanding important medical advances. The journal also provides the option to include various other types of enhanced features including slide sets, videos and animations. All enhanced features are peer reviewed to the same high standard as the article itself. Peer review is conducted using Editorial Manager®, supported by a database of international experts. This database is shared with other Adis journals.