{"title":"Effect of temperature on the dynamic wettability of Chinese fir wood: integrative consideration of surface spreading, penetration and evaporation","authors":"Xianfu Xiao, Kaiwen Chen, Hui Peng, Jianxiong Lyu, Tianyi Zhan","doi":"10.1515/hf-2023-0096","DOIUrl":null,"url":null,"abstract":"Wood wettability, the process of liquid interaction with wood surfaces, is influenced by wood surface chemistry, structure, ambient conditions, and temperature. Understanding how temperature impacts wood wettability is crucial for high-temperature manufacturing processes. In this study, the sessile drop method was employed to explore the dynamic wettability of Chinese fir wood using three different liquids (water, glycerol and polyvinyl acetate (PVAc)) across a range of temperatures (25, 40, 60 and 80 °C). By considering spreading, penetration and evaporation, we revealed that the dynamic wettability of Chinese fir was strongly dependent on temperature and the type of liquid. Temperature elevation enhances wettability, leading to reduced contact angles and increased penetration ratios. Water exhibited the highest wettability, followed by glycerol, with PVAc being the least wetting agent. Notably, after 180 s of wetting at 80 °C, the measured contact angles were 0° for water, 45° for glycerol, and 120° for PVAc. When accounting for evaporation, the penetration of water decreased from 57 % to 47 % (25 °C) and 100 % to 62 % (80 °C). The activation energies for the penetration of water and PVAc into Chinese fir exhibited variations, with values of 35.3 and 158.3 kJ/mol, respectively. These comprehensive wetting results, covering spreading, penetration and evaporation, provide valuable insights into wood–water and wood–adhesive interactions, particularly when exposed to high-temperature conditions.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0096","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Wood wettability, the process of liquid interaction with wood surfaces, is influenced by wood surface chemistry, structure, ambient conditions, and temperature. Understanding how temperature impacts wood wettability is crucial for high-temperature manufacturing processes. In this study, the sessile drop method was employed to explore the dynamic wettability of Chinese fir wood using three different liquids (water, glycerol and polyvinyl acetate (PVAc)) across a range of temperatures (25, 40, 60 and 80 °C). By considering spreading, penetration and evaporation, we revealed that the dynamic wettability of Chinese fir was strongly dependent on temperature and the type of liquid. Temperature elevation enhances wettability, leading to reduced contact angles and increased penetration ratios. Water exhibited the highest wettability, followed by glycerol, with PVAc being the least wetting agent. Notably, after 180 s of wetting at 80 °C, the measured contact angles were 0° for water, 45° for glycerol, and 120° for PVAc. When accounting for evaporation, the penetration of water decreased from 57 % to 47 % (25 °C) and 100 % to 62 % (80 °C). The activation energies for the penetration of water and PVAc into Chinese fir exhibited variations, with values of 35.3 and 158.3 kJ/mol, respectively. These comprehensive wetting results, covering spreading, penetration and evaporation, provide valuable insights into wood–water and wood–adhesive interactions, particularly when exposed to high-temperature conditions.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.