{"title":"On the information complexity for integration in subspaces of the Wiener algebra","authors":"Liang Chen, Haixin Jiang","doi":"10.1016/j.jco.2023.101819","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Goda proved the polynomial tractability of integration on the following function subspace of the Wiener algebra<span><span><span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>|</mo><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msub></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></munder><mo>|</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>max</mi><mo></mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><munder><mi>min</mi><mrow><mi>j</mi><mo>∈</mo><mi>supp</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></munder><mo></mo><mi>log</mi><mo></mo><mo>|</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><mo>)</mo></mrow><mo><</mo><mo>∞</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>R</mi><mo>/</mo><mi>Z</mi><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>k</mi><mo>)</mo></math></span> is the <strong><em>k</em></strong><span>-th Fourier coefficient of </span><em>f</em> and <span><math><mi>supp</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mi>j</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo><mo>|</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mn>0</mn><mo>}</mo></math></span>. Goda raised an open question as to whether the upper bound of the information complexity for integration in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span><span> can be improved. In this note, we give a positive answer. By establishing a Monte Carlo sampling method and using Rademacher complexity to estimate the uniform convergence rate, the upper bound can be improved to </span><span><math><mi>Θ</mi><mo>(</mo><mi>d</mi><mo>/</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></math></span> is the target accuracy. We also use the same technique to estimate the information complexity for a Hölder continuous subspace of Wiener algebra. Compared to the previous upper bound <span><math><mi>Θ</mi><mo>(</mo><mi>max</mi><mo></mo><mo>(</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup></mrow><mrow><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo><mo>)</mo></math></span>, we present a new upper bound <span><math><mi>Θ</mi><mo>(</mo><mo>(</mo><mfrac><mrow><mi>d</mi><mi>log</mi><mo></mo><mi>d</mi></mrow><mrow><mi>q</mi></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>d</mi><mi>log</mi><mo></mo><mo>(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow><mrow><mi>α</mi></mrow></mfrac><mo>)</mo><mo>/</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span><span> are the parameters of Hölder continuity. Ignoring the logarithmic factors, the order of our upper bound is superior to the previous result, especially for the case where the Hölder exponent </span><em>α</em> is small.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000882","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Goda proved the polynomial tractability of integration on the following function subspace of the Wiener algebra where , is the k-th Fourier coefficient of f and . Goda raised an open question as to whether the upper bound of the information complexity for integration in can be improved. In this note, we give a positive answer. By establishing a Monte Carlo sampling method and using Rademacher complexity to estimate the uniform convergence rate, the upper bound can be improved to , where is the target accuracy. We also use the same technique to estimate the information complexity for a Hölder continuous subspace of Wiener algebra. Compared to the previous upper bound , we present a new upper bound , where are the parameters of Hölder continuity. Ignoring the logarithmic factors, the order of our upper bound is superior to the previous result, especially for the case where the Hölder exponent α is small.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.