{"title":"Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties","authors":"Muktar Abdu Kalifa, Nigus Gabbiye Habtu, Addis Lemessa Jembere, Melkamu Birlie Genet","doi":"10.1016/j.crgsc.2023.100395","DOIUrl":null,"url":null,"abstract":"<div><p>Torrefaction is a promising method of treatment with a prospect toward Physco-chemical improvement and thermal upgrading of biomass. In the present study, the torrefaction of sugarcane bagasse in both dry and chemical treatment in comparison with the physical, chemical, and thermal properties of raw bagasse was investigated. Thermochemical torrefaction was carried out by pretreatment of raw bagasse with dilute sulfuric acid. The torrefaction temperature was carried out at a carried temperature (220–280 °C) and a torrefaction period (30–120 min) in a packed bed reactor under an inert environment, whereas dry torrefaction was performed using the same treatment without the addition of a chemical to the raw bagasse. Chars produced by chemical torrefaction were found with improved properties of heating value, energy, and bulk density at 280 °C and 120 min. Increasing temperature resulting in high fixed carbon content apparently decreases moisture content and volatile matter. The mass yield and energy yield were found to be decreased with temperature and time. The carbon content of torrefied bagasse was increased with temperature and time, whereas, hydrogen and oxygen content decreased due to the devolatilization reactions. It was able to upgrade HHV from 16.05 to 20.34 MJ/Kg in dry and 22.29 MJ/Kg in chemical torrefaction.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100395"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086523000413/pdfft?md5=6c49a725898097473a07f5d2f9067dd8&pid=1-s2.0-S2666086523000413-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086523000413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Torrefaction is a promising method of treatment with a prospect toward Physco-chemical improvement and thermal upgrading of biomass. In the present study, the torrefaction of sugarcane bagasse in both dry and chemical treatment in comparison with the physical, chemical, and thermal properties of raw bagasse was investigated. Thermochemical torrefaction was carried out by pretreatment of raw bagasse with dilute sulfuric acid. The torrefaction temperature was carried out at a carried temperature (220–280 °C) and a torrefaction period (30–120 min) in a packed bed reactor under an inert environment, whereas dry torrefaction was performed using the same treatment without the addition of a chemical to the raw bagasse. Chars produced by chemical torrefaction were found with improved properties of heating value, energy, and bulk density at 280 °C and 120 min. Increasing temperature resulting in high fixed carbon content apparently decreases moisture content and volatile matter. The mass yield and energy yield were found to be decreased with temperature and time. The carbon content of torrefied bagasse was increased with temperature and time, whereas, hydrogen and oxygen content decreased due to the devolatilization reactions. It was able to upgrade HHV from 16.05 to 20.34 MJ/Kg in dry and 22.29 MJ/Kg in chemical torrefaction.