Pub Date : 2024-05-29DOI: 10.1016/j.crgsc.2024.100416
David Cantillo
{"title":"Electrochemical synthesis: A flourishing green technology for the manufacturing of organic compounds","authors":"David Cantillo","doi":"10.1016/j.crgsc.2024.100416","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100416","url":null,"abstract":"","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"22-23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100398
Fereshteh Norouzi, Amir Abdolmaleki
In a one-pot tandem condensation reaction, three functional ionic liquids (ILs) derived from pyridinium were employed as green, reusable, and efficient catalysts for the synthesis of important medicinal chemistry derivatives such as 2-amino-4H-chromenes. Additionally, benzimidazoles and benzothiazoles were synthesized using these catalysts. The ILs were favored for their easy set-up, high yields, and short synthesis times for the desired products. Moreover, the ILs could be easily recovered and reuse multiple times without significant loss of catalytic activity. Characterization of the synthesized compound was achieved through FT-IR, 1H NMR, 13C NMR, TGA and melting point analysis. The compounds were prepared with good to excellent isolated yields under mild conditions, while the synthesis of benzimidazoles and benzothiazole derivatives was successful at both reflux and room temperature conditions. Finally, each class of compound was described along with its corresponding synthesis mechanism.
{"title":"Facile protocol, metal-free, one-pot synthesis of 2-amino-4H-chromenes, benzimidazoles, and benzothiazoles via acidic ionic liquids based on pyridinium","authors":"Fereshteh Norouzi, Amir Abdolmaleki","doi":"10.1016/j.crgsc.2024.100398","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100398","url":null,"abstract":"<div><p>In a one-pot tandem condensation reaction, three functional ionic liquids (ILs) derived from pyridinium were employed as green, reusable, and efficient catalysts for the synthesis of important medicinal chemistry derivatives such as 2-amino-4<em>H</em>-chromenes. Additionally, benzimidazoles and benzothiazoles were synthesized using these catalysts. The ILs were favored for their easy set-up, high yields, and short synthesis times for the desired products. Moreover, the ILs could be easily recovered and reuse multiple times without significant loss of catalytic activity. Characterization of the synthesized compound was achieved through FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, TGA and melting point analysis. The compounds were prepared with good to excellent isolated yields under mild conditions, while the synthesis of benzimidazoles and benzothiazole derivatives was successful at both reflux and room temperature conditions. Finally, each class of compound was described along with its corresponding synthesis mechanism.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100398"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000031/pdfft?md5=63bc02acf9dcc2ffd1ae6f3d8b230897&pid=1-s2.0-S2666086524000031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solanesol (C45H74O) is an aliphatic terpene alcohol of nine isoprene units found in the tobacco plant (Nicotiana Tabacum L.). The long and complex biosynthetic pathway of solanesol makes the extraction method still the best way to obtain solanesol. This work evaluates the optimum conditions for sequential extraction from tobacco leaves using microwave-ultrasound-assisted extraction (MUAE) as a green extraction method. There were two stages of extraction (sequential): first, microwave-assisted extraction (MAE), followed by ultrasound-assisted extraction (UAE). At the MAE stage, dry tobacco powder was extracted with variations of water-to-solid (feed) ratio (S/F) from 1:1 to 10:1 (mL/g), power from 200 to 800 W, and time from 0.5 to 2 min. Optimum conditions were obtained at 6:1 (mL/g), 400 W, and 1.5 min, respectively. The UAE stage was fixed with the solvent-to-solid (feed) ratio (S/F), solvent ratio (v/v), time, and temperature of 40:1, 1:2 (PE:ethanolic acid), 30 min, and 40 °C, respectively. The optimum solanesol yield was 3.0 % (w/w), and a nicotine yield of 1.41 % (%w/w) was obtained under the same conditions. The resulting crude solanesol was then purified using silica gel column chromatography (CC), resulting in a purity of 85 %. The yield of extracted solanesol is much higher than in other studies due to the use of fresh leaves and MUAE method.
{"title":"Solanesol sequential extraction from tobacco leaves using microwave-ultrasound-assisted extraction (MUAE): MAE optimization","authors":"Edwin Rizki Safitra , Yuswan Muharam , Farizal , Misri Gozan","doi":"10.1016/j.crgsc.2023.100393","DOIUrl":"10.1016/j.crgsc.2023.100393","url":null,"abstract":"<div><p>Solanesol (C<sub>45</sub>H<sub>74</sub>O) is an aliphatic terpene alcohol of nine isoprene units found in the tobacco plant (<em>Nicotiana Tabacum</em> L.<em>).</em> The long and complex biosynthetic pathway of solanesol makes the extraction method still the best way to obtain solanesol. This work evaluates the optimum conditions for sequential extraction from tobacco leaves using microwave-ultrasound-assisted extraction (MUAE) as a green extraction method. There were two stages of extraction (sequential): first, microwave-assisted extraction (MAE), followed by ultrasound-assisted extraction (UAE). At the MAE stage, dry tobacco powder was extracted with variations of water-to-solid (feed) ratio (S/F) from 1:1 to 10:1 (mL/g), power from 200 to 800 W, and time from 0.5 to 2 min. Optimum conditions were obtained at 6:1 (mL/g), 400 W, and 1.5 min, respectively. The UAE stage was fixed with the solvent-to-solid (feed) ratio (S/F), solvent ratio (v/v), time, and temperature of 40:1, 1:2 (PE:ethanolic acid), 30 min, and 40 °C, respectively. The optimum solanesol yield was 3.0 % (w/w), and a nicotine yield of 1.41 % (%w/w) was obtained under the same conditions. The resulting crude solanesol was then purified using silica gel column chromatography (CC), resulting in a purity of 85 %. The yield of extracted solanesol is much higher than in other studies due to the use of fresh leaves and MUAE method.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100393"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086523000395/pdfft?md5=76670eb1a5044b4c5a87b4224418e038&pid=1-s2.0-S2666086523000395-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caffeic acid (CAF) i is a polyphenolic compound commonly found in plants, valued for its ability to act as an antioxidant. This study focused on investigating the impact of a natural antioxidant, specifically caffeic acid (CAF), compared to two synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), on the thermal stability of propylene/ethylene copolymer (C-PP/PE), Aiming to establish a theoretical framework for the advancement of novel polymeric antioxidant compounds. Theoretical calculations were conducted to determine each compound's thermodynamic properties and antioxidant activity. The phenolic hydroxyl bond dissociation enthalpy (BDE) values revealed that BHA had the lowest value (325.6 kJ mol−1), trailed by CAF (328.2 kJ mol−1) and BHT (341.3 kJ mol−1), indicating a higher electron-donating capacity of BHA. Transition energy (TS) calculations indicated that BHA had the lowest TS energy (49.29 kJ mol−1), succeeded by CAF (57.61 kJ mol−1) and then BHT (75.57 kJ mol−1), suggesting greater efficiency in radical scavenging. Additionally, the obtained rate constants showed that CAF had the highest hydrogen abstraction rate (k = 1.05 × 10⁵ M⁻1 s⁻1), followed by BHA (k = 1.17 × 10⁴ M⁻1 s⁻1), and then BHT (k = 4.2 × 10³ M⁻1 s⁻1). These results support the effectiveness of CAF as a potentially more active antioxidant. In the experimental part of this study, it was observed that C-PP/PE with BHA showed a lower melt flow index (MFI) (8.51), indicating more excellent thermal stability. On the other hand, samples containing natural caffeic acid extracts exhibited a gradual decrease in MFI with increasing CAF concentration (MFI of 9.4, 8.82, 7.59, 6.44, and 5.98 for concentrations of 0.025, 0.05, 0.075, 0.1, and 0.125 ppm, respectively), suggesting a progressive improvement in the thermal stability of C-PP/PE with increasing natural antioxidant. In TGA analyses, decomposition was observed around 340 °C in samples without additives and those containing 0.1 ppm of BHA. In contrast, samples with different concentrations of CAF showed delayed degradation, observed in the temperature range of 380–400 °C. This delay in degradation indicates that CAF imparts more excellent thermal stability to C-PP/PE copolymer, as it reaches temperatures above 400 °C before starting its decomposition. These findings support the feasibility of using natural antioxidants such as CAF to improve the thermal properties of copolymers.
{"title":"Potential of caffeic acid as an effective natural antioxidant for polypropylene-polyethylene copolymers: A DFT and experimental study","authors":"Joaquín Alejandro Hernández Fernández , Katherine Liset Ortiz Paternina , Juan López Martínez","doi":"10.1016/j.crgsc.2024.100422","DOIUrl":"10.1016/j.crgsc.2024.100422","url":null,"abstract":"<div><p>Caffeic acid (CAF) i is a polyphenolic compound commonly found in plants, valued for its ability to act as an antioxidant. This study focused on investigating the impact of a natural antioxidant, specifically caffeic acid (CAF), compared to two synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), on the thermal stability of propylene/ethylene copolymer (C-PP/PE), Aiming to establish a theoretical framework for the advancement of novel polymeric antioxidant compounds. Theoretical calculations were conducted to determine each compound's thermodynamic properties and antioxidant activity. The phenolic hydroxyl bond dissociation enthalpy (BDE) values revealed that BHA had the lowest value (325.6 kJ mol<sup>−1</sup>), trailed by CAF (328.2 kJ mol<sup>−1</sup>) and BHT (341.3 kJ mol<sup>−1</sup>), indicating a higher electron-donating capacity of BHA. Transition energy (TS) calculations indicated that BHA had the lowest TS energy (49.29 kJ mol<sup>−1</sup>), succeeded by CAF (57.61 kJ mol<sup>−1</sup>) and then BHT (75.57 kJ mol<sup>−1</sup>), suggesting greater efficiency in radical scavenging. Additionally, the obtained rate constants showed that CAF had the highest hydrogen abstraction rate (k = 1.05 × 10⁵ M⁻<sup>1</sup> s⁻<sup>1</sup>), followed by BHA (k = 1.17 × 10⁴ M⁻<sup>1</sup> s⁻<sup>1</sup>), and then BHT (k = 4.2 × 10³ M⁻<sup>1</sup> s⁻<sup>1</sup>). These results support the effectiveness of CAF as a potentially more active antioxidant. In the experimental part of this study, it was observed that C-PP/PE with BHA showed a lower melt flow index (MFI) (8.51), indicating more excellent thermal stability. On the other hand, samples containing natural caffeic acid extracts exhibited a gradual decrease in MFI with increasing CAF concentration (MFI of 9.4, 8.82, 7.59, 6.44, and 5.98 for concentrations of 0.025, 0.05, 0.075, 0.1, and 0.125 ppm, respectively), suggesting a progressive improvement in the thermal stability of C-PP/PE with increasing natural antioxidant. In TGA analyses, decomposition was observed around 340 °C in samples without additives and those containing 0.1 ppm of BHA. In contrast, samples with different concentrations of CAF showed delayed degradation, observed in the temperature range of 380–400 °C. This delay in degradation indicates that CAF imparts more excellent thermal stability to C-PP/PE copolymer, as it reaches temperatures above 400 °C before starting its decomposition. These findings support the feasibility of using natural antioxidants such as CAF to improve the thermal properties of copolymers.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100422"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000274/pdfft?md5=ee498f02078447085452c00dec73c446&pid=1-s2.0-S2666086524000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100432
Mehvish Ajaz , Eeman Ali , Dilara Abbas Bukhari , Hafiz Zeeshan Wadood , Shaista Shafiq , Syed Zajif Hussain , Abdul Rehman
The current investigation aimed to identify the bacterial isolates that could prove helpful in the degeneration of harmful azo dyes from wastewater. The bacterial strains 1b, 1 m, and 4v could decolorize azo dyes up to 81 %, 79 %, and 87 % within 5 days. The degraded products by thin layer chromatography (TLC) showed Rf values of 0.89, 0.95, 0.90, 0.92, and 0.98 while the control showed an Rf value of 0.94. The comparison of the retention time of control and treated samples by the high-performance liquid chromatography (HPLC) system convinced that remarkable decolorization had occurred by the bacterial strains. The Fourier transform infrared spectroscopy (FTIR) analysis of the control and degraded samples was proof that the bond stretching occurred in the treated samples due to the action of bacterial strains. The release of compounds by bacteria i.e., 3-Aminobutanoic acid, pyrrolo pyrazine-1, 4-dione, and palmitic acid was inspected by Gas Chromatography-Mass Spectroscopy (GC-MS) analysis. No clear zones showed that the bacterial dye-degraded wastewater had no harm to the normal flora. At last, phytotoxicity was studied on Vigna radiata which had negative results. Given their pollutant degrading capabilities, these bacterial isolates are a good bioresource for green chemistry to exterminate azo dyes from the environment.
{"title":"Evaluation of azo dyes degradation potential of Staphylococcus strains: A strategy for dye-waste management","authors":"Mehvish Ajaz , Eeman Ali , Dilara Abbas Bukhari , Hafiz Zeeshan Wadood , Shaista Shafiq , Syed Zajif Hussain , Abdul Rehman","doi":"10.1016/j.crgsc.2024.100432","DOIUrl":"10.1016/j.crgsc.2024.100432","url":null,"abstract":"<div><div>The current investigation aimed to identify the bacterial isolates that could prove helpful in the degeneration of harmful azo dyes from wastewater. The bacterial strains 1b, 1 m, and 4v could decolorize azo dyes up to 81 %, 79 %, and 87 % within 5 days. The degraded products by thin layer chromatography (TLC) showed Rf values of 0.89, 0.95, 0.90, 0.92, and 0.98 while the control showed an Rf value of 0.94. The comparison of the retention time of control and treated samples by the high-performance liquid chromatography (HPLC) system convinced that remarkable decolorization had occurred by the bacterial strains. The Fourier transform infrared spectroscopy (FTIR) analysis of the control and degraded samples was proof that the bond stretching occurred in the treated samples due to the action of bacterial strains. The release of compounds by bacteria i.e., 3-Aminobutanoic acid, pyrrolo pyrazine-1, 4-dione, and palmitic acid was inspected by Gas Chromatography-Mass Spectroscopy (GC-MS) analysis. No clear zones showed that the bacterial dye-degraded wastewater had no harm to the normal flora. At last, phytotoxicity was studied on <em>Vigna radiata</em> which had negative results. Given their pollutant degrading capabilities, these bacterial isolates are a good bioresource for green chemistry to exterminate azo dyes from the environment.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100432"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100401
Ahmed S. Abou-Elyazed , Amira K.F. Shaban , Ahmed I. Osman , Lobna A. Heikal , Hamdy F.M. Mohamed , Walid M.I. Hassan , Ahmed M. El-Nahas , Basem E. Keshta , Asmaa S. Hamouda
Polyethylene terephthalate (PET) use has increased, causing more PET trash and environmental and health issues. Disposal and burning alone cannot solve this problem. Thus, PET recovery methods with low byproducts are the priority. The recycling rate is still below 30%, so different cleaning methods are being investigated. Therefore, studies have focused on extracting terephthalic acid from PET bottles for MOF synthesis to reduce their cost of production. Herein, MIL-101(Cr) was synthesized from PET bottles and used as a solid catalyst for oleic acid esterification with methanol to produce methyl oleate (biodiesel), an alternative energy source to fossil fuels—the highest biodiesel yields at 1:39 molar ratio of oleic acid to MeOH, 6 wt% loading, 65 °C, and 4 h reactions time were attained at 86.9 and 80% for MIL-101(Cr) on a pristine and scrap basis, respectively. The kinetic study revealed that activation energies were 25.27 kJ/mol and 28.3 kJ/mol for original and waste-derived MIL-101(Cr). The waste-derived MIL-101(Cr) was reused three times while five-time cycles for the original MIL-101(Cr).
聚对苯二甲酸乙二醇酯(PET)的使用量不断增加,造成了更多的 PET 垃圾以及环境和健康问题。仅靠处理和焚烧无法解决这一问题。因此,副产品少的 PET 回收方法成为当务之急。目前的回收率仍低于 30%,因此正在研究不同的清洁方法。因此,研究主要集中在从 PET 瓶中提取对苯二甲酸来合成 MOF,以降低其生产成本。在此,研究人员从 PET 瓶中合成了 MIL-101(Cr),并将其用作固体催化剂,用于油酸与甲醇的酯化反应,以生产油酸甲酯(生物柴油),生物柴油是化石燃料的替代能源--在油酸与 MeOH 的比例为 1:39M、负载量为 6 wt%、温度为 65 °C、反应时间为 4 小时的条件下,MIL-101(Cr)的原始生物柴油产率为 86.9%,报废生物柴油产率为 80%。动力学研究表明,原始 MIL-101(Cr) 和废物衍生 MIL-101(Cr) 的活化能分别为 25.27 kJ/mol 和 28.3 kJ/mol。废物衍生的 MIL-101(Cr)可重复使用三次,而原始的 MIL-101(Cr)可重复使用五次。
{"title":"Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production","authors":"Ahmed S. Abou-Elyazed , Amira K.F. Shaban , Ahmed I. Osman , Lobna A. Heikal , Hamdy F.M. Mohamed , Walid M.I. Hassan , Ahmed M. El-Nahas , Basem E. Keshta , Asmaa S. Hamouda","doi":"10.1016/j.crgsc.2024.100401","DOIUrl":"10.1016/j.crgsc.2024.100401","url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) use has increased, causing more PET trash and environmental and health issues. Disposal and burning alone cannot solve this problem. Thus, PET recovery methods with low byproducts are the priority. The recycling rate is still below 30%, so different cleaning methods are being investigated. Therefore, studies have focused on extracting terephthalic acid from PET bottles for MOF synthesis to reduce their cost of production. Herein, MIL-101(Cr) was synthesized from PET bottles and used as a solid catalyst for oleic acid esterification with methanol to produce methyl oleate (biodiesel), an alternative energy source to fossil fuels—the highest biodiesel yields at 1:39 molar ratio of oleic acid to MeOH, 6 wt% loading, 65 °C, and 4 h reactions time were attained at 86.9 and 80% for MIL-101(Cr) on a pristine and scrap basis, respectively. The kinetic study revealed that activation energies were 25.27 kJ/mol and 28.3 kJ/mol for original and waste-derived MIL-101(Cr). The waste-derived MIL-101(Cr) was reused three times while five-time cycles for the original MIL-101(Cr).</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100401"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000067/pdfft?md5=cacff971fd0fefc9fc756ea60185b573&pid=1-s2.0-S2666086524000067-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100408
Baraa U. Hijazi , Marwa Faraj , Rami Mhanna , Mohammad H. El-Dakdouki
Water bodies are being threatened continuously by various anthropogenic pollutants such as organic dyes and bacteria which led to scarcity of fresh water suitable for drinking and irrigation. Therefore, different water treatment methods have been implemented before the discharge of contaminated wastewater into water bodies. In this report, green-synthesized silver nanoparticles (AgNPs) were evaluated in the degradation of organic dyes and bacterial decontamination. The S. costus root aqueous extract was used as an environmentally benign reducing agent in the biosynthesis of AgNPs. The synthetic procedure was optimized in terms of different parameters, and several analytical techniques were used to thoroughly characterize the prepared nanocomposites including TEM, SEM, EDX, DLS, XRD, FTIR, UV/Vis, photoluminescence, and TGA. The nanoparticles were spherical, monodisperse, colloidally and thermally stable, and crystalline in nature. The efficiency of the biogenic AgNPs as catalysts for the degradation of organic dyes was evaluated against six structurally diverse dyes. These included methylene blue, phenol red, methyl orange, Congo red, orange G and safranin O. Moreover, the applicability of AgNPs as antibacterial agents was tested against K. pneumoniae, S. aureus, S. haemolyticus and E. faecalis where the zones of growth inhibition, MIC and MBC values were determined for each bacterium. Overall, the biosynthesized nanoparticles were remarkable catalysts in the discoloration of hazardous dyes and displayed notable antibacterial potency against Gram-positive and Gram-negative bacteria.
水体不断受到有机染料和细菌等各种人为污染物的威胁,导致适合饮用和灌溉的淡水匮乏。因此,在将受污染的废水排入水体之前,人们采用了不同的水处理方法。本报告评估了绿色合成的银纳米粒子(AgNPs)在降解有机染料和细菌净化方面的作用。在 AgNPs 的生物合成过程中,使用了 S. costus 根的水提取物作为对环境无害的还原剂。对合成过程中的不同参数进行了优化,并使用多种分析技术对制备的纳米复合材料进行了全面表征,包括 TEM、SEM、EDX、DLS、XRD、FTIR、UV/Vis、光致发光和 TGA。纳米颗粒呈球形,单分散,胶体和热稳定性好,性质为结晶。针对六种结构不同的染料,对生物源 AgNPs 作为催化剂降解有机染料的效率进行了评估。此外,还测试了 AgNPs 作为抗菌剂对肺炎双球菌、金黄色葡萄球菌、溶血性链球菌和粪大肠杆菌的适用性,确定了每种细菌的生长抑制区、MIC 和 MBC 值。总之,生物合成的纳米粒子在有害染料的褪色过程中具有显著的催化作用,并对革兰氏阳性和革兰氏阴性细菌具有明显的抗菌效力。
{"title":"Biosynthesis of silver nanoparticles as a reliable alternative for the catalytic degradation of organic dyes and antibacterial applications","authors":"Baraa U. Hijazi , Marwa Faraj , Rami Mhanna , Mohammad H. El-Dakdouki","doi":"10.1016/j.crgsc.2024.100408","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100408","url":null,"abstract":"<div><p>Water bodies are being threatened continuously by various anthropogenic pollutants such as organic dyes and bacteria which led to scarcity of fresh water suitable for drinking and irrigation. Therefore, different water treatment methods have been implemented before the discharge of contaminated wastewater into water bodies. In this report, green-synthesized silver nanoparticles (AgNPs) were evaluated in the degradation of organic dyes and bacterial decontamination. The <em>S. costus</em> root aqueous extract was used as an environmentally benign reducing agent in the biosynthesis of AgNPs. The synthetic procedure was optimized in terms of different parameters, and several analytical techniques were used to thoroughly characterize the prepared nanocomposites including TEM, SEM, EDX, DLS, XRD, FTIR, UV/Vis, photoluminescence, and TGA. The nanoparticles were spherical, monodisperse, colloidally and thermally stable, and crystalline in nature. The efficiency of the biogenic AgNPs as catalysts for the degradation of organic dyes was evaluated against six structurally diverse dyes. These included methylene blue, phenol red, methyl orange, Congo red, orange G and safranin O. Moreover, the applicability of AgNPs as antibacterial agents was tested against <em>K. pneumoniae, S. aureus, S. haemolyticus and E. faecalis</em> where the zones of growth inhibition, MIC and MBC values were determined for each bacterium. Overall, the biosynthesized nanoparticles were remarkable catalysts in the discoloration of hazardous dyes and displayed notable antibacterial potency against Gram-positive and Gram-negative bacteria.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100408"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000134/pdfft?md5=6f95e65239f49890ebd35a44cda23a19&pid=1-s2.0-S2666086524000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100421
Mark Douglas Lawley , Lisa Y. Stein , Dominic Sauvageau
Poly(3-hydroxybutyrate) (PHB), a bio-produced and biodegradable polymer, has great potential as a replacement for petroleum-based polymers in many applications. However, strategies for the extraction and processing of PHB still require improvement. Switchable solvents, which can be toggled between hydrophobic and hydrophilic forms by the addition or removal of carbon dioxide in the presence of water, are easily recyclable and may improve PHB processing methods. Here, we have shown the ability to dissolve PHB in two switchable solvents (N,N-dimethylbenzylamine and N,N-dimethylcyclohexylamine), precipitate PHB by the addition of water and carbon dioxide, and recycle the solvent for subsequent dissolution and precipitation cycles. We have also demonstrated the ability for N,N-dimethylbenzylamine to form gels with PHB which maintain their water/solvent content as the solvent is switched to a hydrophilic form. These results demonstrate the usefulness of switchable solvents as a recyclable platform for PHB processing and their ability to create unique materials.
{"title":"Dissolution and recovery of poly(3-hydroxybutyrate) in switchable solvents and the formation of a switchable gel","authors":"Mark Douglas Lawley , Lisa Y. Stein , Dominic Sauvageau","doi":"10.1016/j.crgsc.2024.100421","DOIUrl":"10.1016/j.crgsc.2024.100421","url":null,"abstract":"<div><p>Poly(3-hydroxybutyrate) (PHB), a bio-produced and biodegradable polymer, has great potential as a replacement for petroleum-based polymers in many applications. However, strategies for the extraction and processing of PHB still require improvement. Switchable solvents, which can be toggled between hydrophobic and hydrophilic forms by the addition or removal of carbon dioxide in the presence of water, are easily recyclable and may improve PHB processing methods. Here, we have shown the ability to dissolve PHB in two switchable solvents (N,N-dimethylbenzylamine and N,N-dimethylcyclohexylamine), precipitate PHB by the addition of water and carbon dioxide, and recycle the solvent for subsequent dissolution and precipitation cycles. We have also demonstrated the ability for N,N-dimethylbenzylamine to form gels with PHB which maintain their water/solvent content as the solvent is switched to a hydrophilic form. These results demonstrate the usefulness of switchable solvents as a recyclable platform for PHB processing and their ability to create unique materials.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100421"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000262/pdfft?md5=770d36b10a4551bb4f95ac8e7373c1ba&pid=1-s2.0-S2666086524000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel, uncomplicated, and cost-effective methodology has been devised for the rapid synthesis of novel lower-rim-connected bisresorcinarene macrocycles. The incorporation of sodium p-styrenesulfonate (NaSS) facilitates the generation of a diverse array of products on a large scale, achieving high yields. Notably, the utilization of NaSS obviates the need for corrosive acids, and the absence of toxic solvents renders this reaction both environmentally friendly and economically advantageous. Furthermore, the process eliminates the necessity for column chromatography in product purification. The structural characterization of the synthesized derivatives was confirmed through comprehensive analyses, including FT-IR, 1H NMR, 13C NMR, HR-Mass, and CHNO techniques.
{"title":"A cost-efficient method for green synthesis of novel derivatives lower-rim-connected bisresorcinarene macrocycles in large-scale by sodium p-styrenesulfonate","authors":"Azin Kharazmi , Ramin Ghorbani-Vaghei , Ardeshir Khazaei , Idris Karakaya , Rahman Karimi-Nami","doi":"10.1016/j.crgsc.2024.100396","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100396","url":null,"abstract":"<div><p>A novel, uncomplicated, and cost-effective methodology has been devised for the rapid synthesis of novel lower-rim-connected bisresorcinarene macrocycles. The incorporation of sodium <em>p</em>-styrenesulfonate (NaSS) facilitates the generation of a diverse array of products on a large scale, achieving high yields. Notably, the utilization of NaSS obviates the need for corrosive acids, and the absence of toxic solvents renders this reaction both environmentally friendly and economically advantageous. Furthermore, the process eliminates the necessity for column chromatography in product purification. The structural characterization of the synthesized derivatives was confirmed through comprehensive analyses, including FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, HR-Mass, and CHNO techniques.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100396"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000018/pdfft?md5=28181a17df5c3ef153ceeabcb0a8bf00&pid=1-s2.0-S2666086524000018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.crgsc.2024.100424
Ghadeer Jalloul, Aya Hachem, Mohammad H. Hashem, Ahmad B. Albadarin, Mohammad N. Ahmad
Heterogeneous photocatalysis operated under visible light is considered an efficient and ecofriendly method to remove pharmaceuticals from water streams. However, the recovery of the nano-sized catalyst particles limits this technology to small-scale applications. In this study, we prepared Fe-doped P25 TiO2 photocatalysts and immobilized them over PVDF-HFP electrospun membranes for the photocatalytic degradation of Tetracycline antibiotic under visible light. To ensure uniform distribution of the nanoparticles on the fibers, the electrospinning voltage and the weight percentage of TiO2 were varied, and two preparation methods were applied to disperse the catalyst in the polymeric solution. In order to maximize the visible light exposure of the membranes, 3D printed membrane holders with square and circular shapes were designed to immerse the membrane in Tetracycline solution. The results showed that immobilizing P25 catalysts on the fibers of the membranes limited their visible light absorption when the light source was assembled on the top of the aqueous reaction medium. This occurred due to the membrane's opacity limited light penetration, resulting in uneven irradiation throughout its depth. Based on this, a new photocatalytic reactor design was proposed with immersed light illumination source to reduce the distance between the membrane and the light source for improved activation of the P25 particles. In this design, a 3D-printed vertical membrane holder was also included to accommodate a larger membrane surface area and therefore minimize the required spatial area for large industrial applications.
在可见光下运行的异相光催化技术被认为是去除水流中药物的一种高效、环保的方法。然而,纳米级催化剂颗粒的回收限制了该技术的小规模应用。在本研究中,我们制备了掺杂铁的 P25 TiO2 光催化剂,并将其固定在 PVDF-HFP 电纺丝膜上,用于在可见光下光催化降解四环素类抗生素。为确保纳米颗粒在纤维上的均匀分布,改变了电纺电压和 TiO2 的重量百分比,并采用两种制备方法将催化剂分散在聚合物溶液中。为了最大限度地提高膜的可见光曝光率,设计了方形和圆形的 3D 打印膜支架,将膜浸入四环素溶液中。结果表明,当光源装配在水性反应介质的顶部时,将 P25 催化剂固定在膜的纤维上会限制其对可见光的吸收。这是因为膜的不透明性限制了光的穿透,导致整个膜深度的照射不均匀。在此基础上,我们提出了一种新的光催化反应器设计,采用浸入式光源,以减少膜与光源之间的距离,从而提高 P25 颗粒的活化效果。在该设计中,还包括一个 3D 打印的垂直膜支架,以容纳更大的膜表面积,从而最大限度地减少大型工业应用所需的空间面积。
{"title":"Fe-doped TiO2/PVDF-HFP electrospun membranes for tetracycline photocatalytic degradation under visible light","authors":"Ghadeer Jalloul, Aya Hachem, Mohammad H. Hashem, Ahmad B. Albadarin, Mohammad N. Ahmad","doi":"10.1016/j.crgsc.2024.100424","DOIUrl":"10.1016/j.crgsc.2024.100424","url":null,"abstract":"<div><p>Heterogeneous photocatalysis operated under visible light is considered an efficient and ecofriendly method to remove pharmaceuticals from water streams. However, the recovery of the nano-sized catalyst particles limits this technology to small-scale applications. In this study, we prepared Fe-doped P25 TiO<sub>2</sub> photocatalysts and immobilized them over PVDF-HFP electrospun membranes for the photocatalytic degradation of Tetracycline antibiotic under visible light. To ensure uniform distribution of the nanoparticles on the fibers, the electrospinning voltage and the weight percentage of TiO<sub>2</sub> were varied, and two preparation methods were applied to disperse the catalyst in the polymeric solution. In order to maximize the visible light exposure of the membranes, 3D printed membrane holders with square and circular shapes were designed to immerse the membrane in Tetracycline solution. The results showed that immobilizing P25 catalysts on the fibers of the membranes limited their visible light absorption when the light source was assembled on the top of the aqueous reaction medium. This occurred due to the membrane's opacity limited light penetration, resulting in uneven irradiation throughout its depth. Based on this, a new photocatalytic reactor design was proposed with immersed light illumination source to reduce the distance between the membrane and the light source for improved activation of the P25 particles. In this design, a 3D-printed vertical membrane holder was also included to accommodate a larger membrane surface area and therefore minimize the required spatial area for large industrial applications.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100424"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000298/pdfft?md5=2fb74c08885ee52bd8896686264d12ac&pid=1-s2.0-S2666086524000298-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}