A. Alhadhrami, Muhammad Zeshan, Hafiz Muhammad Tahir Farid
{"title":"Microwave absorption behavior of Gd-doped spinel ferrites at high frequencies","authors":"A. Alhadhrami, Muhammad Zeshan, Hafiz Muhammad Tahir Farid","doi":"10.1007/s41779-023-00982-9","DOIUrl":null,"url":null,"abstract":"<div><p>The spinel ferrites (SFs) are renowned for their distinctive magnetic and electrical characteristics. Sol-gel route was used for the fabrication of Sr<sub>0.6</sub> Zn<sub>0.4</sub> Gd<sub>x</sub> Fe<sub>2-<i>x</i></sub> O<sub>4</sub> (0.00, 0.025, 0.050, 0.075, 0.100) ferrites. The structural, magnetic, microwave, and DC (direct current) properties of prepared Nps were found using of number characterization techniques. The X-ray diffraction (XRD) pattern of Sr<sub>0.6</sub> Zn<sub>0.4</sub> Gd<sub><i>x</i></sub> Fe<sub>2-<i>x</i></sub> O<sub>4</sub> SFs showed a single cubic phase. The magnetic behavior was determined by applying a field of 2 kOe. The various magnetic features, including those determined based on the M-H loop, and prepared spinel ferrites showed the soft nature of magnetic materials. When amount of gadolinium (Gd) is increased, then saturation magnetization, coercivity, remanence magnetization is decreased. The Ms values decreased from 69.36 to 32.18 emu/g, coercivity reduced from 220 to 14 emu/g, and remanence magnetization is decreased from 32 to 3 emu/g. The electrical parameters revealed that direct current resistivity and activation energy (Ea) increased (from 0.16 eV to 0.28eV) with the inclusion of the Gd. The activation energy was increased from 0.16 to 0.28 eV. The dielectric constant and loss of permittivity and permeability were determined by applying the frequency 5.5–9.5 GHz. From the above enhanced parameters, it can be concluded that fabricated SFs may be suitable for high-frequency devices.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 2","pages":"609 - 618"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-023-00982-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The spinel ferrites (SFs) are renowned for their distinctive magnetic and electrical characteristics. Sol-gel route was used for the fabrication of Sr0.6 Zn0.4 Gdx Fe2-x O4 (0.00, 0.025, 0.050, 0.075, 0.100) ferrites. The structural, magnetic, microwave, and DC (direct current) properties of prepared Nps were found using of number characterization techniques. The X-ray diffraction (XRD) pattern of Sr0.6 Zn0.4 Gdx Fe2-x O4 SFs showed a single cubic phase. The magnetic behavior was determined by applying a field of 2 kOe. The various magnetic features, including those determined based on the M-H loop, and prepared spinel ferrites showed the soft nature of magnetic materials. When amount of gadolinium (Gd) is increased, then saturation magnetization, coercivity, remanence magnetization is decreased. The Ms values decreased from 69.36 to 32.18 emu/g, coercivity reduced from 220 to 14 emu/g, and remanence magnetization is decreased from 32 to 3 emu/g. The electrical parameters revealed that direct current resistivity and activation energy (Ea) increased (from 0.16 eV to 0.28eV) with the inclusion of the Gd. The activation energy was increased from 0.16 to 0.28 eV. The dielectric constant and loss of permittivity and permeability were determined by applying the frequency 5.5–9.5 GHz. From the above enhanced parameters, it can be concluded that fabricated SFs may be suitable for high-frequency devices.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted