{"title":"Feedback Stabilization of a Two-Fluid Surface Tension System Modeling the Motion of a Soap Bubble at Low Reynolds Number: The Two-Dimensional Case","authors":"Sébastien Court","doi":"10.1007/s00021-023-00841-4","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to design a feedback operator for stabilizing in infinite time horizon a system modeling the interactions between a viscous incompressible fluid and the deformation of a soap bubble. The latter is represented by an interface separating a bounded domain of <span>\\(\\mathbb {R}^2\\)</span> into two connected parts filled with viscous incompressible fluids. The interface is a smooth perturbation of the 1-sphere, and the surrounding fluids satisfy the incompressible Stokes equations in time-dependent domains. The mean curvature of the surface defines a surface tension force which induces a jump of the normal trace of the Cauchy stress tensor. The response of the fluids is a velocity trace on the interface, governing the time evolution of the latter, via the equality of velocities. The data are assumed to be sufficiently small, in particular the initial perturbation, that is the initial shape of the soap bubble is close enough to a circle. The control function is a surface tension type force on the interface. We design it as the sum of two feedback operators: one is explicit, the second one is finite-dimensional. They enable us to define a control operator that stabilizes locally the soap bubble to a circle with an arbitrary exponential decay rate, up to translations, and up to non-contact with the outer boundary.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00841-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00841-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to design a feedback operator for stabilizing in infinite time horizon a system modeling the interactions between a viscous incompressible fluid and the deformation of a soap bubble. The latter is represented by an interface separating a bounded domain of \(\mathbb {R}^2\) into two connected parts filled with viscous incompressible fluids. The interface is a smooth perturbation of the 1-sphere, and the surrounding fluids satisfy the incompressible Stokes equations in time-dependent domains. The mean curvature of the surface defines a surface tension force which induces a jump of the normal trace of the Cauchy stress tensor. The response of the fluids is a velocity trace on the interface, governing the time evolution of the latter, via the equality of velocities. The data are assumed to be sufficiently small, in particular the initial perturbation, that is the initial shape of the soap bubble is close enough to a circle. The control function is a surface tension type force on the interface. We design it as the sum of two feedback operators: one is explicit, the second one is finite-dimensional. They enable us to define a control operator that stabilizes locally the soap bubble to a circle with an arbitrary exponential decay rate, up to translations, and up to non-contact with the outer boundary.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.