{"title":"Weak Solutions to a Compressible Viscous Non-resistive MHD Equations with General Boundary Data","authors":"Yang Li, Young-Sam Kwon, Yongzhong Sun","doi":"10.1007/s00021-025-00922-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a compressible MHD equations describing the evolution of viscous non-resistive fluids in piecewise regular bounded Lipschitz domains. Under the general inflow-outflow boundary conditions, we prove existence of global-in-time weak solutions with finite energy initial data. The present result extends considerably the previous work by Li and Sun (J Differ Equ 267:3827–3851, 2019), where the homogeneous Dirichlet boundary condition for velocity field is treated. The proof leans on the specific mathematical structure of equations and the recently developed theory of open fluid systems. Furthermore, we establish the weak-strong uniqueness principle, namely a weak solution coincides with the strong solution on the lifespan of the latter provided they emanate from the same initial and boundary data. This basic property is expected to be useful in the study of convergence of numerical solutions.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00922-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with a compressible MHD equations describing the evolution of viscous non-resistive fluids in piecewise regular bounded Lipschitz domains. Under the general inflow-outflow boundary conditions, we prove existence of global-in-time weak solutions with finite energy initial data. The present result extends considerably the previous work by Li and Sun (J Differ Equ 267:3827–3851, 2019), where the homogeneous Dirichlet boundary condition for velocity field is treated. The proof leans on the specific mathematical structure of equations and the recently developed theory of open fluid systems. Furthermore, we establish the weak-strong uniqueness principle, namely a weak solution coincides with the strong solution on the lifespan of the latter provided they emanate from the same initial and boundary data. This basic property is expected to be useful in the study of convergence of numerical solutions.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.