{"title":"Ascorbic acid: a metabolite switch for designing stress-smart crops.","authors":"Shefali Mishra, Ankush Sharma, Ashish Kumar Srivastava","doi":"10.1080/07388551.2023.2286428","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing \"stress-smart\" crops in future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1350-1366"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2286428","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing "stress-smart" crops in future.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.