首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Food contamination from packaging material with special focus on the Bisphenol-A. 包装材料对食品的污染,特别关注双酚 A。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-06-05 DOI: 10.1080/07388551.2024.2344571
Aparna Agarwal, Shivika Gandhi, Abhishek Dutt Tripathi, Abhishek Gupta, Marco Iammarino, Jaisal Kaur Sidhu

Additives, such as bisphenol A (BPA) that are added to packaging material to enhance functionality may migrate into food products creating a concern for food safety. BPA has been linked to various chronic diseases, such as: diabetes, obesity, prostate cancer, impaired thyroid function, and several other metabolic disorders. To safeguard consumers, BPA migration limits have been defined by regulatory bodies. However, it is important to address the underlying factors and mechanisms so that they can be optimized in order to minimize BPA migration. In this review, we determine the relative importance of the factors, i.e. temperature, contact time, pH, food composition, storage time and temperature, package type, cleaning, and aging, and packaging damage that promote BPA migration in foods. Packaging material seems to be the key source of BPA and the temperature (applied during food production, storage, can sterilization and cleaning processes) was the critical driver influencing BPA migration.

为增强功能而添加到包装材料中的添加剂(如双酚 A (BPA))可能会迁移到食品中,从而引发食品安全问题。双酚 A 与多种慢性疾病有关,如糖尿病、肥胖症、前列腺癌、甲状腺功能受损和其他一些代谢紊乱。为了保障消费者的安全,监管机构规定了双酚 A 迁移限量。然而,重要的是要解决潜在的因素和机制,以便对其进行优化,从而最大限度地减少双酚 A 迁移。在本综述中,我们确定了温度、接触时间、pH 值、食品成分、储存时间和温度、包装类型、清洁和老化以及包装损坏等因素在促进食品中双酚 A 迁移方面的相对重要性。包装材料似乎是双酚 A 迁移的主要来源,而温度(食品生产、储存、罐头消毒和清洗过程中的温度)则是影响双酚 A 迁移的关键因素。
{"title":"Food contamination from packaging material with special focus on the Bisphenol-A.","authors":"Aparna Agarwal, Shivika Gandhi, Abhishek Dutt Tripathi, Abhishek Gupta, Marco Iammarino, Jaisal Kaur Sidhu","doi":"10.1080/07388551.2024.2344571","DOIUrl":"10.1080/07388551.2024.2344571","url":null,"abstract":"<p><p>Additives, such as bisphenol A (BPA) that are added to packaging material to enhance functionality may migrate into food products creating a concern for food safety. BPA has been linked to various chronic diseases, such as: diabetes, obesity, prostate cancer, impaired thyroid function, and several other metabolic disorders. To safeguard consumers, BPA migration limits have been defined by regulatory bodies. However, it is important to address the underlying factors and mechanisms so that they can be optimized in order to minimize BPA migration. In this review, we determine the relative importance of the factors, i.e. temperature, contact time, pH, food composition, storage time and temperature, package type, cleaning, and aging, and packaging damage that promote BPA migration in foods. Packaging material seems to be the key source of BPA and the temperature (applied during food production, storage, can sterilization and cleaning processes) was the critical driver influencing BPA migration.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"69-79"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental impact of microplastics and potential health hazards. 微塑料对环境的影响和潜在的健康危害。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-06-24 DOI: 10.1080/07388551.2024.2344572
K B Megha, D Anvitha, S Parvathi, A Neeraj, J Sonia, P V Mohanan

Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.

微型塑料(微塑料)污染物威胁着地球的生物多样性和生态系统。由于超大塑料容器和产品逐渐破碎,或在生产过程中尺寸变小,微塑料(直径为 5 毫米的颗粒,无下限)被用于药品、个人护理产品和工业中。微塑料在空气、海水、陆地,甚至人类和动物食用的食物中随处可见。最令人担忧的问题之一是,塑料垃圾会对我们脆弱的生态系统造成永久性破坏。不可能完全清除海洋中的所有微塑料污染,这是我们的管理机构、研究科学家和个人的主要任务之一。采取必要措施减少塑料消耗量是保护我们环境的唯一途径。切断塑料流是减少浪费和污染的关键补救措施,这种方法意义重大。本综述全面探讨了微塑料的各个方面,包括其成分、类型、特性、起源、健康风险和环境影响。此外,它还深入探讨了理解海洋生态系统中微塑料动态的策略,重点是避免微塑料融入食物链的每一层。
{"title":"Environmental impact of microplastics and potential health hazards.","authors":"K B Megha, D Anvitha, S Parvathi, A Neeraj, J Sonia, P V Mohanan","doi":"10.1080/07388551.2024.2344572","DOIUrl":"10.1080/07388551.2024.2344572","url":null,"abstract":"<p><p>Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"97-127"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects. 植物 YABBY 转录因子:基因表达、生物功能和前景综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-06-03 DOI: 10.1080/07388551.2024.2344576
Kaiyuan Han, Meng Lai, Tianyun Zhao, Xiong Yang, Xinmin An, Zhong Chen

Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.

转录因子通常包含几个不同的功能区,包括 DNA 结合域,在植物生长、发育和对外界刺激的反应中发挥着重要的调控作用。YABYY 转录因子具有植物特异性,含有两个不可或缺的特殊结构域(N 端 C2C2 锌指结构域和 C 端螺旋环螺旋结构域)。具体来说,YABBY 转录因子在维持叶片正反轴的极性,以及调控植物的无性和生殖生长、激素反应、抗逆性和次生代谢物合成等方面发挥着关键作用。最近,对不同植物中 YABBY 转录因子的鉴定和功能验证越来越多。在此基础上,我们总结了 YABBY 转录因子家族在鉴定、分类、表达模式和功能等方面的最新进展。YABBY 转录因子的正常表达和功能依赖于通过 YABBY 家族成员与其他基因的相互作用而建立的调控网络。我们讨论了叶极性建立和花器官发育过程中 YABBY 转录因子的相互作用网络。本文为研究 YABBY 的功能、植物遗传改良和分子育种提供了参考。
{"title":"Plant YABBY transcription factors: a review of gene expression, biological functions, and prospects.","authors":"Kaiyuan Han, Meng Lai, Tianyun Zhao, Xiong Yang, Xinmin An, Zhong Chen","doi":"10.1080/07388551.2024.2344576","DOIUrl":"10.1080/07388551.2024.2344576","url":null,"abstract":"<p><p>Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C<sub>2</sub>C<sub>2</sub> zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"214-235"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How do probiotics alleviate constipation? A narrative review of mechanisms. 益生菌如何缓解便秘?机制综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-06 DOI: 10.1080/07388551.2024.2336531
Yu-Ping Huang, Jie-Yan Shi, Xin-Tao Luo, Si-Chen Luo, Peter C K Cheung, Harold Corke, Qiong-Qiong Yang, Bo-Bo Zhang

Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.

便秘是一种常见的肠胃疾病,可能发生在任何年龄段,影响着无数人。由于目前的药物治疗无法提供完全令人满意的效果,人们一直在寻找治疗便秘的新方法。近年来,益生菌因其疗效显著且副作用小于药物而备受关注。许多研究试图回答益生菌如何缓解便秘的问题。研究表明,不同的益生菌株可以通过不同的机制缓解便秘。益生菌缓解便秘的机制与多方面有关,包括调节肠道微生物群组成、短链脂肪酸水平、aquaporin表达水平、神经递质和激素水平、炎症、肠道环境代谢状态、神经营养因子水平和机体抗氧化剂水平。本文总结了对益生菌缓解便秘机制的认识,并就新的研究方向提出了一些建议。
{"title":"How do probiotics alleviate constipation? A narrative review of mechanisms.","authors":"Yu-Ping Huang, Jie-Yan Shi, Xin-Tao Luo, Si-Chen Luo, Peter C K Cheung, Harold Corke, Qiong-Qiong Yang, Bo-Bo Zhang","doi":"10.1080/07388551.2024.2336531","DOIUrl":"10.1080/07388551.2024.2336531","url":null,"abstract":"<p><p>Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"80-96"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic biology for the food industry: advances and challenges. 食品工业的合成生物学:进步与挑战。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-26 DOI: 10.1080/07388551.2024.2340530
Ruipeng Chen, Shuyue Ren, Shuang Li, Huanying Zhou, Xuexia Jia, Dianpeng Han, Zhixian Gao

As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.

随着全球环境污染的加剧、气候变化的恶化和人口的持续增长,确保安全、营养和可持续的食品供应已成为巨大的挑战。这就对未来的食品供应方法和功能提出了新的要求。利用合成生物学技术创建适合食品工业生产的细胞工厂,并将可再生原料转化为:重要的食品成分、功能性食品添加剂和营养化学品,是解决食品工业所面临问题的重要方法。在此,我们回顾了合成生物学在食品工业中的最新进展和应用,包括传统食品(人工色素、肉类、淀粉和牛奶)、功能食品(甜味剂、糖替代品、营养素、调味剂)和绿色食品(绿色纤维、可降解包装材料、绿色包装材料和食品可追溯性)的替代品。此外,我们还讨论了基于合成生物学的食品工业应用的未来前景。因此,本综述可为食品安全、食品营养、公共卫生和健康相关领域的合成生物学研究提供参考。
{"title":"Synthetic biology for the food industry: advances and challenges.","authors":"Ruipeng Chen, Shuyue Ren, Shuang Li, Huanying Zhou, Xuexia Jia, Dianpeng Han, Zhixian Gao","doi":"10.1080/07388551.2024.2340530","DOIUrl":"10.1080/07388551.2024.2340530","url":null,"abstract":"<p><p>As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"23-47"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. 基因组挖掘和合成生物学在天然产品的发现和生物合成方面的最新进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-08-12 DOI: 10.1080/07388551.2024.2383754
Mingpeng Wang, Lei Chen, Zhaojie Zhang, Qinhong Wang

Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.

长期以来,天然产品一直是化学和医药生产中的重要原材料,主要为药物发现和开发提供优质支架或中间体。在过去的一个世纪中,天然产品占治疗药物生产的三分之一以上。然而,在过去几十年里,利用天然产品生产药物的传统方法效率越来越低,成本越来越高。基于基因组测序、生物信息学工具、大数据分析、基因工程、代谢工程和系统生物学的基因组挖掘和合成生物学的综合利用有望应对这一趋势。在此,我们回顾了近期(2020-2023 年)利用基因组挖掘和合成生物学解决天然产品生产难题的实例,如品种少、效率低、产量低等。此外,我们还讨论了合成生物学的新兴高效工具、设计原理和构建策略,及其在 NPs 合成中的应用前景。
{"title":"Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products.","authors":"Mingpeng Wang, Lei Chen, Zhaojie Zhang, Qinhong Wang","doi":"10.1080/07388551.2024.2383754","DOIUrl":"10.1080/07388551.2024.2383754","url":null,"abstract":"<p><p>Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"236-256"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens. 从内生菌中提取抗菌素,作为对抗耐药性病原体的新型疗法。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-06 DOI: 10.1080/07388551.2024.2342979
Pragya Tiwari, Shreya Thakkar, Laurent Dufossé

The rapid increase in antimicrobial resistance (AMR) projects a "global emergency" and necessitates a need to discover alternative resources for combating drug-resistant pathogens or "superbugs." One of the key themes in "One Health Concept" is based on the fact that the interconnected network of humans, the environment, and animal habitats majorly contribute to the rapid selection and spread of AMR. Moreover, the injudicious and overuse of antibiotics in healthcare, the environment, and associated disciplines, further aggravates the concern. The prevalence and persistence of AMR contribute to the global economic burden and are constantly witnessing an upsurge due to fewer therapeutic options, rising mortality statistics, and expensive healthcare. The present decade has witnessed the extensive exploration and utilization of bio-based resources in harnessing antibiotics of potential efficacies. The discovery and characterization of diverse chemical entities from endophytes as potent antimicrobials define an important yet less-explored area in natural product-mediated drug discovery. Endophytes-produced antimicrobials show potent efficacies in targeting microbial pathogens and synthetic biology (SB) mediated engineering of endophytes for yield enhancement, forms a prospective area of research. In keeping with the urgent requirements for new/novel antibiotics and growing concerns about pathogenic microbes and AMR, this paper comprehensively reviews emerging trends, prospects, and challenges of antimicrobials from endophytes and their effective production via SB. This literature review would serve as the platform for further exploration of novel bioactive entities from biological organisms as "novel therapeutics" to address AMR.

抗菌药耐药性(AMR)的快速增长引发了 "全球紧急状况",因此有必要寻找替代资源来对抗耐药病原体或 "超级细菌"。一个健康概念 "的关键主题之一是,人类、环境和动物栖息地之间相互关联的网络是导致 AMR 快速选择和传播的主要原因。此外,在医疗保健、环境和相关学科中滥用和过度使用抗生素进一步加剧了人们的担忧。AMR 的流行和持续存在加重了全球的经济负担,并且由于治疗选择的减少、死亡率统计数字的上升和昂贵的医疗费用而不断激增。近十年来,人们广泛探索和利用生物资源来开发具有潜在疗效的抗生素。从内生菌中发现和鉴定多种化学实体作为强效抗菌剂,是天然产物介导的药物发现中一个重要但探索较少的领域。内生菌产生的抗菌素在针对微生物病原体方面显示出强大的功效,而以合成生物学(SB)为介导的内生菌工程以提高产量,则是一个前景广阔的研究领域。鉴于对新型抗生素的迫切需求以及对病原微生物和 AMR 的日益关注,本文全面回顾了内生菌抗菌剂的新趋势、前景和挑战,以及通过合成生物学技术有效生产这些抗菌剂的情况。这篇文献综述将成为进一步探索生物体中新型生物活性实体作为 "新型疗法 "以应对 AMR 的平台。
{"title":"Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens.","authors":"Pragya Tiwari, Shreya Thakkar, Laurent Dufossé","doi":"10.1080/07388551.2024.2342979","DOIUrl":"10.1080/07388551.2024.2342979","url":null,"abstract":"<p><p>The rapid increase in antimicrobial resistance (AMR) projects a \"global emergency\" and necessitates a need to discover alternative resources for combating drug-resistant pathogens or \"superbugs.\" One of the key themes in \"One Health Concept\" is based on the fact that the interconnected network of humans, the environment, and animal habitats majorly contribute to the rapid selection and spread of AMR. Moreover, the injudicious and overuse of antibiotics in healthcare, the environment, and associated disciplines, further aggravates the concern. The prevalence and persistence of AMR contribute to the global economic burden and are constantly witnessing an upsurge due to fewer therapeutic options, rising mortality statistics, and expensive healthcare. The present decade has witnessed the extensive exploration and utilization of bio-based resources in harnessing antibiotics of potential efficacies. The discovery and characterization of diverse chemical entities from endophytes as potent antimicrobials define an important yet less-explored area in natural product-mediated drug discovery. Endophytes-produced antimicrobials show potent efficacies in targeting microbial pathogens and synthetic biology (SB) mediated engineering of endophytes for yield enhancement, forms a prospective area of research. In keeping with the urgent requirements for new/novel antibiotics and growing concerns about pathogenic microbes and AMR, this paper comprehensively reviews emerging trends, prospects, and challenges of antimicrobials from endophytes and their effective production <i>via</i> SB. This literature review would serve as the platform for further exploration of novel bioactive entities from biological organisms as \"novel therapeutics\" to address AMR.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"164-190"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing: trends and approaches toward achieving long-term sustainability in the food industry. 三维打印:实现食品工业长期可持续性的趋势和方法。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-26 DOI: 10.1080/07388551.2024.2344577
Priyamvada Thorakkattu, Nancy Awasti, Karthik Sajith Babu, Anandu Chandra Khanashyam, Aiswariya Deliephan, Kartik Shah, Punit Singh, R Pandiselvam, Nilesh Prakash Nirmal

Global food security has recently been under serious threat from the rapid rise in the world's population, the problems brought on by climate change, and the appearance of new pandemics. As a result, the need for novel and innovative solutions to solve the existing problems and improve food sustainability has become crucial. 3D printing is expected to play a significant role in providing tangible contributions to the food industry in achieving sustainable development goals. The 3D food printing holds the potential to produce highly customized food in terms of shape, texture, flavor, structure and nutritional value and enable us to create new unique formulations and edible alternatives. The problem of whether the cost of the printed meal and 3D printing itself can be sustainably produced is becoming more and more important due to global concerns. This review intends to provide a comprehensive overview of 3D printed foods with an overview of the current printing methodologies, illustrating the technology's influencing factors, and its applications in personalized nutrition, packaging, value addition, and valorization aspects to fully integrate sustainability concerns thus exploring the potential of 3D food printing.

近来,世界人口的迅速增长、气候变化带来的问题以及新流行病的出现,使全球粮食安全受到严重威胁。因此,亟需新颖、创新的解决方案来解决现有问题,提高粮食的可持续性。三维打印技术有望在为食品工业实现可持续发展目标做出切实贡献方面发挥重要作用。三维食品打印有可能在形状、质地、风味、结构和营养价值方面生产出高度定制化的食品,使我们能够创造出新的独特配方和可食用替代品。由于全球关注的问题,打印食品的成本和 3D 打印本身能否可持续生产的问题正变得越来越重要。本综述旨在全面介绍 3D 打印食品,概述当前的打印方法,说明该技术的影响因素,及其在个性化营养、包装、增值和估价方面的应用,以充分考虑可持续发展问题,从而探索 3D 食品打印的潜力。
{"title":"3D printing: trends and approaches toward achieving long-term sustainability in the food industry.","authors":"Priyamvada Thorakkattu, Nancy Awasti, Karthik Sajith Babu, Anandu Chandra Khanashyam, Aiswariya Deliephan, Kartik Shah, Punit Singh, R Pandiselvam, Nilesh Prakash Nirmal","doi":"10.1080/07388551.2024.2344577","DOIUrl":"10.1080/07388551.2024.2344577","url":null,"abstract":"<p><p>Global food security has recently been under serious threat from the rapid rise in the world's population, the problems brought on by climate change, and the appearance of new pandemics. As a result, the need for novel and innovative solutions to solve the existing problems and improve food sustainability has become crucial. 3D printing is expected to play a significant role in providing tangible contributions to the food industry in achieving sustainable development goals. The 3D food printing holds the potential to produce highly customized food in terms of shape, texture, flavor, structure and nutritional value and enable us to create new unique formulations and edible alternatives. The problem of whether the cost of the printed meal and 3D printing itself can be sustainably produced is becoming more and more important due to global concerns. This review intends to provide a comprehensive overview of 3D printed foods with an overview of the current printing methodologies, illustrating the technology's influencing factors, and its applications in personalized nutrition, packaging, value addition, and valorization aspects to fully integrate sustainability concerns thus exploring the potential of 3D food printing.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"48-68"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligonucleotide probes for imaging and diagnosis of bacterial infections. 用于成像和诊断细菌感染的寡核苷酸探针。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-06-03 DOI: 10.1080/07388551.2024.2344574
Luís Moreira, Nuno Miguel Guimarães, Rita Sobral Santos, Joana Angélica Loureiro, Maria do Carmo Pereira, Nuno Filipe Azevedo

The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.

随着传染病成为公共卫生问题,有必要开发快速、精确的诊断方法。核成像和光学成像等成像技术提供了诊断体内传染病的能力,消除了临床样本取样和预富集造成的延误,并提供了有助于做出更明智诊断的空间信息。传统的分子探针通常只能对受感染的组织进行成像,而不能准确识别病原体。相比之下,寡核苷酸可以针对特定的 RNA 序列进行定制,从而识别病原体,甚至通过关注耐药基因生成抗生素敏感性图谱。尽管核酸模拟物(NAMs)在稳定寡核苷酸方面有很多好处,但这些相对较大的分子无法充分输送到细菌的细胞质中,这仍然是广泛使用这项技术的一个挑战。本综述总结了用于体内成像的寡核苷酸探针领域的主要进展,重点介绍了文献中描述的最有希望通过体内杂交发展光学成像的输送系统。
{"title":"Oligonucleotide probes for imaging and diagnosis of bacterial infections.","authors":"Luís Moreira, Nuno Miguel Guimarães, Rita Sobral Santos, Joana Angélica Loureiro, Maria do Carmo Pereira, Nuno Filipe Azevedo","doi":"10.1080/07388551.2024.2344574","DOIUrl":"10.1080/07388551.2024.2344574","url":null,"abstract":"<p><p>The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for <i>in vivo</i> imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through <i>in vivo</i> hybridization.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"128-147"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. 大肠杆菌和毕赤菌:生产全长 IgG 的微生物细胞工厂平台。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-26 DOI: 10.1080/07388551.2024.2342969
Shyam Krishna, Sang Taek Jung, Eun Yeol Lee

Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.

由于需求得不到满足,制药业正在研究哺乳动物细胞以外的宿主,以生产用于各种治疗和研究的抗体。尽管存在一些缺点,大肠杆菌和毕赤菌仍是生产抗体的首选微生物宿主。尽管在大肠杆菌中已成功生产出全长抗体,但大肠杆菌大多用于生产抗体片段,如抗原结合片段(Fab)、单链片段变量(scFv)和纳米抗体。相比之下,真核微生物宿主 Pichia 大多用于生产糖基化的全长抗体,但高甘露糖基化是一大挑战。先进的策略,如在内毒素编辑的大肠杆菌中引入类人糖基化和基于无细胞系统的糖基化,正在这些微生物中创建类人糖基化抗体谱方面取得进展。这篇综述首先解释了抗体的结构和功能要求,然后描述和分析了大肠杆菌和棒状杆菌作为宿主提供有利环境以创造全功能抗体的潜力。此外,作者还比较了这些微生物的某些特征,并预测了它们在抗体生产中的前景。简而言之,这篇综述分析、比较并强调了大肠杆菌和牧杆菌作为生产抗体的潜在宿主。
{"title":"<i>Escherichia coli</i> and <i>Pichia pastoris</i>: microbial cell-factory platform for -full-length IgG production.","authors":"Shyam Krishna, Sang Taek Jung, Eun Yeol Lee","doi":"10.1080/07388551.2024.2342969","DOIUrl":"10.1080/07388551.2024.2342969","url":null,"abstract":"<p><p>Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, <i>Escherichia coli</i> and <i>Pichia pastoris</i> are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in <i>E. coli</i>, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, <i>Pichia</i>, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited <i>E</i>. <i>coli</i> and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of <i>E. coli</i> and <i>P. pastoris</i> as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights <i>E. coli</i> and <i>P. pastoris</i> as potential hosts for antibody production.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"191-213"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1