{"title":"Premature Deaths Due To Heat Exposure: The Potential Effects of Neighborhood-Level Versus City-Level Acclimatization Within US Cities","authors":"D. Shindell, R. Hunter, G. Faluvegi, L. Parsons","doi":"10.1029/2023GH000970","DOIUrl":null,"url":null,"abstract":"<p>For the population of a given US city, the risk of premature death associated with heat exposure increases as temperatures rise, but risks in hotter cities are generally lower than in cooler cities at equivalent temperatures due to factors such as acclimatization. Those living in especially hot neighborhoods within cities might therefore suffer much more than average if such adaptation is only at the city-wide level, whereas they might not experience greatly increased risk if adjustment is at the neighborhood level. To compare these possibilities, we use high spatial resolution temperature data to evaluated heat-related deaths assuming either adjustment at the city-wide or at the neighborhood scale in 10 large US cities. On average, we find that if inhabitants are adjusted to their local conditions, a neighborhood that was 10°C hotter than a cooler one would experience only about 1.0–1.5 excess heat deaths per year per 100,000 persons. By contrast, if inhabitants are acclimatized to city-wide temperatures, the hotter neighborhood would experience about 15 excess deaths per year per 100,000 persons. Using idealized analyses, we demonstrate that current city-wide epidemiological data do not differentiate between these differing adjustments. Given the very large effects of assumptions about neighborhood-level acclimatization found here, as well as the fact that current literature is conflicting on the spatial scale of acclimatization, more neighborhood-level epidemiological data are urgently needed to determine the health impacts of variations in heat exposure within urban areas, better constrain projected changes, and inform mitigation efforts.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000970","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000970","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For the population of a given US city, the risk of premature death associated with heat exposure increases as temperatures rise, but risks in hotter cities are generally lower than in cooler cities at equivalent temperatures due to factors such as acclimatization. Those living in especially hot neighborhoods within cities might therefore suffer much more than average if such adaptation is only at the city-wide level, whereas they might not experience greatly increased risk if adjustment is at the neighborhood level. To compare these possibilities, we use high spatial resolution temperature data to evaluated heat-related deaths assuming either adjustment at the city-wide or at the neighborhood scale in 10 large US cities. On average, we find that if inhabitants are adjusted to their local conditions, a neighborhood that was 10°C hotter than a cooler one would experience only about 1.0–1.5 excess heat deaths per year per 100,000 persons. By contrast, if inhabitants are acclimatized to city-wide temperatures, the hotter neighborhood would experience about 15 excess deaths per year per 100,000 persons. Using idealized analyses, we demonstrate that current city-wide epidemiological data do not differentiate between these differing adjustments. Given the very large effects of assumptions about neighborhood-level acclimatization found here, as well as the fact that current literature is conflicting on the spatial scale of acclimatization, more neighborhood-level epidemiological data are urgently needed to determine the health impacts of variations in heat exposure within urban areas, better constrain projected changes, and inform mitigation efforts.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.