{"title":"Epimorphic development in tropical shallow-water Nymphonidae (Arthropoda: Pycnogonida) revealed by fluorescence imaging","authors":"Claudia P. Arango, Georg Brenneis","doi":"10.1186/s40851-023-00223-8","DOIUrl":null,"url":null,"abstract":"Extant lineages of sea spiders (Pycnogonida) exhibit different types of development. Most commonly, pycnogonids hatch as a minute, feeding protonymphon larva with subsequent anamorphic development. However, especially in cold water habitats at higher latitudes and in the deep sea, some taxa have large, lecithotrophic larvae, or even undergo extended embryonic development with significantly advanced postlarval hatching stages. Similar biogeographic trends are observed in other marine invertebrates, often referred to as “Thorson’s rule”. To expand our knowledge on the developmental diversity in the most speciose pycnogonid genus Nymphon, we studied the developmental stages of the two tropical representatives N. floridanum and N. micronesicum., We compared classical scanning electron microscopy with fluorescence-based approaches to determine which imaging strategy is better suited for the ethanol-fixed material available. Both species show epimorphic development and hatch as an advanced, lecithotrophic postlarval instar possessing the anlagen of all body segments. Leg pairs 1–3 show a considerable degree of differentiation at hatching, but their proximal regions remain coiled and hidden under the cuticle of the hatching instar. The adult palp and oviger are not anteceded by three-articled larval limbs, but differentiate directly from non-articulated limb buds during postembryonic development. Fluorescence imaging yielded more reliable morphological data than classical scanning electron microscopy, being the method of choice for maximal information gain from rare and fragile sea spider samples fixed in high-percentage ethanol. The discovery of epimorphic development with lecithotrophic postlarval instars in two small Nymphon species from tropical shallow-water habitats challenges the notion that this developmental pathway represents an exclusive cold-water adaptation in Nymphonidae. Instead, close phylogenetic affinities to the likewise more direct-developing Callipallenidae hint at a common evolutionary origin of this trait in the clade Nymphonoidea (Callipallenidae + Nymphonidae). The lack of functional palpal and ovigeral larval limbs in callipallenids and postlarval hatchers among nymphonids may be a derived character of Nymphonoidea. To further test this hypothesis, a stable and well-resolved phylogenetic backbone for Nymphonoidea is key.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-023-00223-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extant lineages of sea spiders (Pycnogonida) exhibit different types of development. Most commonly, pycnogonids hatch as a minute, feeding protonymphon larva with subsequent anamorphic development. However, especially in cold water habitats at higher latitudes and in the deep sea, some taxa have large, lecithotrophic larvae, or even undergo extended embryonic development with significantly advanced postlarval hatching stages. Similar biogeographic trends are observed in other marine invertebrates, often referred to as “Thorson’s rule”. To expand our knowledge on the developmental diversity in the most speciose pycnogonid genus Nymphon, we studied the developmental stages of the two tropical representatives N. floridanum and N. micronesicum., We compared classical scanning electron microscopy with fluorescence-based approaches to determine which imaging strategy is better suited for the ethanol-fixed material available. Both species show epimorphic development and hatch as an advanced, lecithotrophic postlarval instar possessing the anlagen of all body segments. Leg pairs 1–3 show a considerable degree of differentiation at hatching, but their proximal regions remain coiled and hidden under the cuticle of the hatching instar. The adult palp and oviger are not anteceded by three-articled larval limbs, but differentiate directly from non-articulated limb buds during postembryonic development. Fluorescence imaging yielded more reliable morphological data than classical scanning electron microscopy, being the method of choice for maximal information gain from rare and fragile sea spider samples fixed in high-percentage ethanol. The discovery of epimorphic development with lecithotrophic postlarval instars in two small Nymphon species from tropical shallow-water habitats challenges the notion that this developmental pathway represents an exclusive cold-water adaptation in Nymphonidae. Instead, close phylogenetic affinities to the likewise more direct-developing Callipallenidae hint at a common evolutionary origin of this trait in the clade Nymphonoidea (Callipallenidae + Nymphonidae). The lack of functional palpal and ovigeral larval limbs in callipallenids and postlarval hatchers among nymphonids may be a derived character of Nymphonoidea. To further test this hypothesis, a stable and well-resolved phylogenetic backbone for Nymphonoidea is key.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.