Pub Date : 2024-12-31DOI: 10.1186/s40851-024-00246-9
Mildred J Johnson, Sarah Lemer, Masato Hirose, Sebastian H Decker, Thomas Schwaha
Boring bryozoans dissolve calcium carbonate substrates, leaving unique borehole traces. Depending on the shell type, borehole apertures and colony morphology can be diagnostic for distinguishing taxa, but to discriminate among species their combination with zooidal morphology is essential. All boring (endolithic) bryozoans are ctenostomes that, along with other boring taxa, are common in benthic communities. The growth rates of such bryozoans, including Immergentiidae, are largely unknown. For the first time laboratory experiments were conducted to determine growth rates and early colony development of the intertidal species Immergentia stephanieae and the subtidal species I. cf. suecica from Roscoff, France. In growth experiment 1, ancestrular growth rates varied, with the highest rates in I. stephanieae at 96.5 µm day-1 and the lowest at 1.1 µm day-1, during the period of August to October, in which the number of reproductive zooids was comparably higher than in other months of the year. Immergentia cf. suecica had a higher proportion of reproductive zooids from December to March compared to other months. In growth experiment 2, the bryozoans were fed a culture mixture of Chaetoceros calcitrans and Tisochrysis lutea which was compared with a control. The growth rate of small colonies of comparable size was greater in the food-enriched samples compared to the control (non-enriched). In larger colonies, the trend differed with greater growth (cystid appendage expansion) rate reported for some samples in the control. In food-enriched samples ancestrulae of I. stephanieae grew at 23 µm day-1 and I. cf. suecica 9.3 µm day-1 while no growth was observed in the control of I. cf. suecica, but 0.4 µm day-1 was reported for I. stephanieae. Growth patterns in the early developmental stages showed that the budding patterns from the ancestrulae were the same for both species, with different enantiomorphic tendencies. Inter- and intraspecific interactions are also discussed. The distribution of immergentiids is presented, as are records from new locations and the greatest subtidal depth of collection reported to date.
{"title":"Ecology of endolithic bryozoans: colony development, growth rates and interactions of species in the genus Immergentia.","authors":"Mildred J Johnson, Sarah Lemer, Masato Hirose, Sebastian H Decker, Thomas Schwaha","doi":"10.1186/s40851-024-00246-9","DOIUrl":"10.1186/s40851-024-00246-9","url":null,"abstract":"<p><p>Boring bryozoans dissolve calcium carbonate substrates, leaving unique borehole traces. Depending on the shell type, borehole apertures and colony morphology can be diagnostic for distinguishing taxa, but to discriminate among species their combination with zooidal morphology is essential. All boring (endolithic) bryozoans are ctenostomes that, along with other boring taxa, are common in benthic communities. The growth rates of such bryozoans, including Immergentiidae, are largely unknown. For the first time laboratory experiments were conducted to determine growth rates and early colony development of the intertidal species Immergentia stephanieae and the subtidal species I. cf. suecica from Roscoff, France. In growth experiment 1, ancestrular growth rates varied, with the highest rates in I. stephanieae at 96.5 µm day<sup>-1</sup> and the lowest at 1.1 µm day<sup>-1</sup>, during the period of August to October, in which the number of reproductive zooids was comparably higher than in other months of the year. Immergentia cf. suecica had a higher proportion of reproductive zooids from December to March compared to other months. In growth experiment 2, the bryozoans were fed a culture mixture of Chaetoceros calcitrans and Tisochrysis lutea which was compared with a control. The growth rate of small colonies of comparable size was greater in the food-enriched samples compared to the control (non-enriched). In larger colonies, the trend differed with greater growth (cystid appendage expansion) rate reported for some samples in the control. In food-enriched samples ancestrulae of I. stephanieae grew at 23 µm day<sup>-1</sup> and I. cf. suecica 9.3 µm day<sup>-1</sup> while no growth was observed in the control of I. cf. suecica, but 0.4 µm day<sup>-1</sup> was reported for I. stephanieae. Growth patterns in the early developmental stages showed that the budding patterns from the ancestrulae were the same for both species, with different enantiomorphic tendencies. Inter- and intraspecific interactions are also discussed. The distribution of immergentiids is presented, as are records from new locations and the greatest subtidal depth of collection reported to date.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"23"},"PeriodicalIF":1.7,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Among the insects with wings clad in scales, the butterflies are the best known and those showing greatest variety of scale types. In the Diptera, some families or particular genera of two large groups are known to bear scales on wings, i.e., mosquitoes (Culicomorpha) and moth flies (Psychodomorpha). From among another large dipteran group, the crane-flies (Tipulomorpha), scales are present on wings only in one small genus, Maietta Alexander, now endemic to the southwestern coast of South America. Here, we describe an Eocene ancestor of Maietta, embedded in Baltic amber, Maietta hoffeinsetta, n. sp. This species and its recent congeners document evolution of scale cover from sparse and scarce, restricted only to anterior portion of wing, to complete and dense. A similar parallel evolutionary route was previously described in the Culicidae. The fossil representative of Maietta provides also a further example of biogeographical relationships of Baltic fauna with recent congeners distributed today far from Europe. The present finding prompts a discussion on a possible role of scales in adaptation to post Eocene cooling down of climate.
在翅膀上覆有鳞片的昆虫中,蝴蝶是最著名的,也是鳞片种类最多的昆虫。在双翅目中,已知有两大类群的某些科或特定属的翅膀上有鳞片,即蚊(Culicomorpha)和蛾蝇(Psychodomorpha)。在另一个大型双翅目类群中,只有一个小属(Maietta Alexander)的翅膀上有鳞片,该属现在是南美洲西南海岸的特有种。本文描述了Maietta的始新世祖先,埋藏在波罗的海琥珀中,Maietta hoffeinsetta, n. sp.。该物种及其最近的同系物记录了鳞片覆盖从稀疏和稀少,仅局限于翅膀前部,到完整和密集的进化过程。之前在库蚊科中也有类似的平行进化路线。迈耶塔的化石代表还提供了波罗的海动物群与今天远离欧洲的近亲之间生物地理关系的进一步例子。目前的发现促使人们讨论尺度在适应始新世后气候变冷中的可能作用。
{"title":"Evolution of wing scales in Diptera documented by fossils.","authors":"Ewa Krzemińska, Wiesław Krzemiński, Iwona Kania-Kłosok, Jadwiga Stanek-Tarkowska, Kornelia Skibińska, Daubian Santos","doi":"10.1186/s40851-024-00244-x","DOIUrl":"10.1186/s40851-024-00244-x","url":null,"abstract":"<p><p>Among the insects with wings clad in scales, the butterflies are the best known and those showing greatest variety of scale types. In the Diptera, some families or particular genera of two large groups are known to bear scales on wings, i.e., mosquitoes (Culicomorpha) and moth flies (Psychodomorpha). From among another large dipteran group, the crane-flies (Tipulomorpha), scales are present on wings only in one small genus, Maietta Alexander, now endemic to the southwestern coast of South America. Here, we describe an Eocene ancestor of Maietta, embedded in Baltic amber, Maietta hoffeinsetta, n. sp. This species and its recent congeners document evolution of scale cover from sparse and scarce, restricted only to anterior portion of wing, to complete and dense. A similar parallel evolutionary route was previously described in the Culicidae. The fossil representative of Maietta provides also a further example of biogeographical relationships of Baltic fauna with recent congeners distributed today far from Europe. The present finding prompts a discussion on a possible role of scales in adaptation to post Eocene cooling down of climate.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"22"},"PeriodicalIF":1.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1186/s40851-024-00245-w
Karina Wieczorek, Dominik Chłond, Emmanuelle Jousselin, Stephen J Coulson
Species identification within the aphid genus Pemphigus Hartig, 1839 poses challenges due to morphological similarities and host-plant associations. Aphids of this genus generally exhibit complex life cycles involving primary hosts (poplars) and secondary (mostly unrelated herbaceous) host-plants, with some species relying solely on root-feeding generation. An example is a representative of the genus Pemphigus, trophically associated with grass roots, found in the High Arctic Svalbard archipelago. Historical records tentatively identify it as Pemphigus groenlandicus (Rübsaamen, 1898), although its formal classification remains elusive, due to limited material of freshly collected samples. Recent collections from 2007 to 2024 across various Svalbard sites, revealed its presence under stones in sheltered microhabitats, providing valuable specimens for comparative studies. Our molecular analyses indicate that the Svalbard specimens are not a separate species commonly identified as P. groenlandicus, nor an anholocyclic generation of Pemphigus bursarius (Linnaeus, 1758) or P. borealis Tullgren, 1909, but represent a secondary generation of Pemphigus populiglobuli Fitch, 1859, the Nearctic poplar bullet gall aphid. This suggests that they may have lost their primary host associations and adapted to living on grass roots year-round. Our specimens did not host any known facultative symbionts; however, we detected a strain of Pseudomonas Migula, 1894, closely related to a cold-tolerant bacterium abundant in polar regions. The present study also investigates the taxonomic relationships and morphometric characteristics of grass-feeding Pemphigus populations across the Arctic and an isolated locations on the European continent. Specimens from Svalbard were compared with samples from Greenland and Iceland, but identified no substantial morphometric differences among these geographically separated populations. Similarly, analyses of samples of Pemphigus groenlandicus crassicornis Hille Ris Lambers, 1952 from Sweden and Spain reveals a high morphometric similarity to the Arctic population, indicating a strong link between these traits and geographical variability. Despite the limitations in fresh material availability across locations, minor morphometric variations and shared ecological niches (all populations studied inhabiting grass roots, a unique trait within the Pemphigus genus) suggest treating both P. groenlandicus and its subspecies crassicornis as a junior synonym to P. populiglobuli. The study also demonstrates that the secondary generation of P. populiglobuli is a terrestrial microarthropod that overwinters in a postembryonic life-stage in situ in soil and vegetation under harsh Arctic conditions, and its cryptic life complicates its distribution mapping.
{"title":"The lost generation of Pemphigus populiglobuli (Hemiptera, Aphididae): exploring the taxonomy of the Svalbard aphids of genus Pemphigus.","authors":"Karina Wieczorek, Dominik Chłond, Emmanuelle Jousselin, Stephen J Coulson","doi":"10.1186/s40851-024-00245-w","DOIUrl":"10.1186/s40851-024-00245-w","url":null,"abstract":"<p><p>Species identification within the aphid genus Pemphigus Hartig, 1839 poses challenges due to morphological similarities and host-plant associations. Aphids of this genus generally exhibit complex life cycles involving primary hosts (poplars) and secondary (mostly unrelated herbaceous) host-plants, with some species relying solely on root-feeding generation. An example is a representative of the genus Pemphigus, trophically associated with grass roots, found in the High Arctic Svalbard archipelago. Historical records tentatively identify it as Pemphigus groenlandicus (Rübsaamen, 1898), although its formal classification remains elusive, due to limited material of freshly collected samples. Recent collections from 2007 to 2024 across various Svalbard sites, revealed its presence under stones in sheltered microhabitats, providing valuable specimens for comparative studies. Our molecular analyses indicate that the Svalbard specimens are not a separate species commonly identified as P. groenlandicus, nor an anholocyclic generation of Pemphigus bursarius (Linnaeus, 1758) or P. borealis Tullgren, 1909, but represent a secondary generation of Pemphigus populiglobuli Fitch, 1859, the Nearctic poplar bullet gall aphid. This suggests that they may have lost their primary host associations and adapted to living on grass roots year-round. Our specimens did not host any known facultative symbionts; however, we detected a strain of Pseudomonas Migula, 1894, closely related to a cold-tolerant bacterium abundant in polar regions. The present study also investigates the taxonomic relationships and morphometric characteristics of grass-feeding Pemphigus populations across the Arctic and an isolated locations on the European continent. Specimens from Svalbard were compared with samples from Greenland and Iceland, but identified no substantial morphometric differences among these geographically separated populations. Similarly, analyses of samples of Pemphigus groenlandicus crassicornis Hille Ris Lambers, 1952 from Sweden and Spain reveals a high morphometric similarity to the Arctic population, indicating a strong link between these traits and geographical variability. Despite the limitations in fresh material availability across locations, minor morphometric variations and shared ecological niches (all populations studied inhabiting grass roots, a unique trait within the Pemphigus genus) suggest treating both P. groenlandicus and its subspecies crassicornis as a junior synonym to P. populiglobuli. The study also demonstrates that the secondary generation of P. populiglobuli is a terrestrial microarthropod that overwinters in a postembryonic life-stage in situ in soil and vegetation under harsh Arctic conditions, and its cryptic life complicates its distribution mapping.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"21"},"PeriodicalIF":1.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1186/s40851-024-00242-z
Kai R Caspar, Lisa Hüttner, Sabine Begall
{"title":"Correction: Scleral appearance is not a correlate of domestication in mammals.","authors":"Kai R Caspar, Lisa Hüttner, Sabine Begall","doi":"10.1186/s40851-024-00242-z","DOIUrl":"10.1186/s40851-024-00242-z","url":null,"abstract":"","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"19"},"PeriodicalIF":1.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The osteohistology of Andrias spp. is a pivotal analogue for large fossil non-amniotes (e.g., Temnospondyli), and the endangered status of this taxon underlines the importance of gathering information on its growth. We here present the first osteohistological study by petrographic thin sections of an ontogenetic series of humeri and femora of eight individuals of varying sizes (28.5-104 cm) and ages (2.5-32 years) of Andrias japonicus from the Hiroshima City Asa Zoological Park, Japan. In addition, two individuals of A. cf. davidianus of unknown age but of different size (62 cm and 94 cm) were studied. All samples of Andrias spp. show a primary avascular periosteal cortex made of parallel-fibred tissue around the ossification center in the petrographic thin sections. Mainly in small individuals, the fibers forming this tissue are very coarse and loosely organized. With increasing size and age, the coarse tissue is irregularly intermixed and later replaced with finer and better organized fibers. This histologic change is accompanied by a change from diffuse annuli in the inner cortex to distinct lines of arrested growth (LAGs) in the outer cortex. We interpret these changes in tissue and the appearance of distinct growth marks as indicating the onset of active reproduction. The lack of primary vascularization around the ossification center in our Andrias spp. sample is striking and contradicts other observations. Vascularity may be prone to plasticity and further studies are necessary. We hypothesize that the large osteocyte lacunae and the dense networks of canaliculi observed in our sample may have nourished the tissue instead of primary vascular canals. We measured the size of osteocyte lacunae of Andrias spp. in comparison to other Lissamphibia, and found them to be significantly larger throughout ontogeny. The periosteal cortex contains a high amount of thick Sharpey's fibers all around the midshaft cross sections. The two samples of Andrias cf. davidianus show tissue and growth mark distribution similar to that observed in A. japonicus. However, the large individual of A. cf. davidianus differed in its extremely osteosclerotic condition and the retention of a small layer of calcified cartilage in the endosteal region of the femur. It remains unclear whether these differences are related to plasticity, taxonomy, sex, exogenous factors, or attributable to a regenerated but fully regrown leg. Although the present study is based on zoo-kept and not wild, animals, it yields important insights into osteohistological plasticity and growth patterns in giant salamanders.
{"title":"Unique bone histology of modern giant salamanders: a study on humeri and femora of Andrias spp.","authors":"Nicole Klein, Dorota Konietzko-Meier, Sudipta Kalita, Masahiro Noda, Sena Ishikawa, Yuki Taguchi, Wataru Anzai, Shoji Hayashi","doi":"10.1186/s40851-024-00240-1","DOIUrl":"https://doi.org/10.1186/s40851-024-00240-1","url":null,"abstract":"<p><p>The osteohistology of Andrias spp. is a pivotal analogue for large fossil non-amniotes (e.g., Temnospondyli), and the endangered status of this taxon underlines the importance of gathering information on its growth. We here present the first osteohistological study by petrographic thin sections of an ontogenetic series of humeri and femora of eight individuals of varying sizes (28.5-104 cm) and ages (2.5-32 years) of Andrias japonicus from the Hiroshima City Asa Zoological Park, Japan. In addition, two individuals of A. cf. davidianus of unknown age but of different size (62 cm and 94 cm) were studied. All samples of Andrias spp. show a primary avascular periosteal cortex made of parallel-fibred tissue around the ossification center in the petrographic thin sections. Mainly in small individuals, the fibers forming this tissue are very coarse and loosely organized. With increasing size and age, the coarse tissue is irregularly intermixed and later replaced with finer and better organized fibers. This histologic change is accompanied by a change from diffuse annuli in the inner cortex to distinct lines of arrested growth (LAGs) in the outer cortex. We interpret these changes in tissue and the appearance of distinct growth marks as indicating the onset of active reproduction. The lack of primary vascularization around the ossification center in our Andrias spp. sample is striking and contradicts other observations. Vascularity may be prone to plasticity and further studies are necessary. We hypothesize that the large osteocyte lacunae and the dense networks of canaliculi observed in our sample may have nourished the tissue instead of primary vascular canals. We measured the size of osteocyte lacunae of Andrias spp. in comparison to other Lissamphibia, and found them to be significantly larger throughout ontogeny. The periosteal cortex contains a high amount of thick Sharpey's fibers all around the midshaft cross sections. The two samples of Andrias cf. davidianus show tissue and growth mark distribution similar to that observed in A. japonicus. However, the large individual of A. cf. davidianus differed in its extremely osteosclerotic condition and the retention of a small layer of calcified cartilage in the endosteal region of the femur. It remains unclear whether these differences are related to plasticity, taxonomy, sex, exogenous factors, or attributable to a regenerated but fully regrown leg. Although the present study is based on zoo-kept and not wild, animals, it yields important insights into osteohistological plasticity and growth patterns in giant salamanders.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"18"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1186/s40851-024-00239-8
Jolanta Brożek, Adam Stroiński, Anna Romaniak, Thierry Bourgoin
A review of the cuticular and sensory metatibial and metatarsal structures in cixiid planthoppers (Hemiptera: Fulgoromorpha) is proposed, depicting both their strong disparity and the great diversity of the patterns observed. Terminology and definitions for these structures are provided. The so-called lateral teeth of the metatibia in fact are particular styloconic sensory structures, called spiniform sensilla in Cixiidae. The apical metatibiotarsal teeth are non-sensory cuticular expansions, often bearing one or several chaetic sensilla ventrally, generally distributed in an internal and an external group of three teeth each, in some instances separated by a diastema; innermost and outermost teeth are generally larger. On the first tarsomere seven to eight teeth generally occur in one row, although two rows are observed in Brixidiini. A strong diversity of conformations and patterns is observed in the second metatarsomere. A specific subdorsal sensillum, of platellar type, may be present in the first metatarsomere teeth for a few taxa. It is generally present in the second metatarsomere, either as a narrow-based acutellar sensillum or as a broad-based platellar sensillum according to the taxon. Scanning electron microscope (SEM) analyses of 54 species of cixiids from all described tribes of the family, supplemented by data from the literature, are used to provide a metatibiotarsal diagnosis for each of the tribes of Cixiidae. In the state of our knowledge of the sufficiently precise observations of metatibiotarsal structures in the Cixiidae which are available, and of the phylogeny of the group as a frame of reference for their interpretations, we note that the observed patterns are probably the result of multiple and independent convergences and evolutionary regressions. These occurred at all levels of cixiid classification. Although these patterns can be useful in the identification of taxa at a low taxonomic level, they would be less useful for phylogenetic approaches.
{"title":"Disparity of metatibial and metatarsal cuticular and sensory structures in Cixiidae (Hemiptera: Fulgoromorpha) with a metatibiotarsal diagnosis for the tribes.","authors":"Jolanta Brożek, Adam Stroiński, Anna Romaniak, Thierry Bourgoin","doi":"10.1186/s40851-024-00239-8","DOIUrl":"10.1186/s40851-024-00239-8","url":null,"abstract":"<p><p>A review of the cuticular and sensory metatibial and metatarsal structures in cixiid planthoppers (Hemiptera: Fulgoromorpha) is proposed, depicting both their strong disparity and the great diversity of the patterns observed. Terminology and definitions for these structures are provided. The so-called lateral teeth of the metatibia in fact are particular styloconic sensory structures, called spiniform sensilla in Cixiidae. The apical metatibiotarsal teeth are non-sensory cuticular expansions, often bearing one or several chaetic sensilla ventrally, generally distributed in an internal and an external group of three teeth each, in some instances separated by a diastema; innermost and outermost teeth are generally larger. On the first tarsomere seven to eight teeth generally occur in one row, although two rows are observed in Brixidiini. A strong diversity of conformations and patterns is observed in the second metatarsomere. A specific subdorsal sensillum, of platellar type, may be present in the first metatarsomere teeth for a few taxa. It is generally present in the second metatarsomere, either as a narrow-based acutellar sensillum or as a broad-based platellar sensillum according to the taxon. Scanning electron microscope (SEM) analyses of 54 species of cixiids from all described tribes of the family, supplemented by data from the literature, are used to provide a metatibiotarsal diagnosis for each of the tribes of Cixiidae. In the state of our knowledge of the sufficiently precise observations of metatibiotarsal structures in the Cixiidae which are available, and of the phylogeny of the group as a frame of reference for their interpretations, we note that the observed patterns are probably the result of multiple and independent convergences and evolutionary regressions. These occurred at all levels of cixiid classification. Although these patterns can be useful in the identification of taxa at a low taxonomic level, they would be less useful for phylogenetic approaches.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"16"},"PeriodicalIF":1.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348580/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism.
Results: Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress.
Conclusions: This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.
{"title":"Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome.","authors":"Kenta Sugiura, Yuki Yoshida, Kohei Hayashi, Kazuharu Arakawa, Takekazu Kunieda, Midori Matsumoto","doi":"10.1186/s40851-024-00233-0","DOIUrl":"10.1186/s40851-024-00233-0","url":null,"abstract":"<p><strong>Background: </strong>In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism.</p><p><strong>Results: </strong>Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress.</p><p><strong>Conclusions: </strong>This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"11"},"PeriodicalIF":1.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1186/s40851-024-00231-2
Ya-Fu Lee, Yen-Min Kuo, Bing-Yuan Chuang, Hui-Ching Hsu, Yi-Jun Huang, Yu-Chen Su, Wen-Chen Lee
Multiple mating by avian females may increase hatching and overall brood success; however, reproductive effort and parental investment are costly, and females may be gradually depleted, with lowered outputs over time. Thus, males in social polyandry systems may differ greatly in their reproductive gains. In the present study, we investigated the reproductive outputs of social polyandrous and sex-role-reversed pheasant-tailed jacanas, Hydrophasianus chirurgus, to assess the effects of polyandry, seasonality, and male mating order on breeding success. Female jacanas produced multiple clutches, either by leaving two or more clutches with an individual male (22%), or by mating with two or more males (78%). The polyandrous females laid both the first and second clutches earlier and showed a breeding period more than twice as long as that of monandrous females. Both polyandry and seasonality affected the fate of a clutch, where clutches from polyandrous females and the early season had higher hatching and brood success rates, but the number of polyandrous females declined over the season. Polyandrous females not only laid more clutches and eggs, and gained more hatchlings and fledglings, but also achieved higher per-clutch outputs and hatching rates than monandrous females. In polyandry groups, males gained higher total hatchlings and fledglings, although not total clutches or eggs, than males in monandry or bi-andry groups. Moreover, males in polyandry groups achieved higher hatchlings and fledglings per clutch and higher hatching and brood success rates. In polyandry groups, the first-mating males obtained more clutches, eggs, and hatchlings; however, they did not have higher success rates, nor total fledglings and per-clutch outputs, than males who mated later. Overall, the results indicate a selective advantage of polyandry for the jacanas studied, particularly in the early breeding season. This advantage, however, differs both between the sexes and intra-sexually, suggesting strong connections with certain ecological/environmental conditions in addition to the jacanas’ own quality.
{"title":"Brood success of sex-role-reversed pheasant-tailed jacanas: the effects of social polyandry, seasonality, and male mating order","authors":"Ya-Fu Lee, Yen-Min Kuo, Bing-Yuan Chuang, Hui-Ching Hsu, Yi-Jun Huang, Yu-Chen Su, Wen-Chen Lee","doi":"10.1186/s40851-024-00231-2","DOIUrl":"https://doi.org/10.1186/s40851-024-00231-2","url":null,"abstract":"Multiple mating by avian females may increase hatching and overall brood success; however, reproductive effort and parental investment are costly, and females may be gradually depleted, with lowered outputs over time. Thus, males in social polyandry systems may differ greatly in their reproductive gains. In the present study, we investigated the reproductive outputs of social polyandrous and sex-role-reversed pheasant-tailed jacanas, Hydrophasianus chirurgus, to assess the effects of polyandry, seasonality, and male mating order on breeding success. Female jacanas produced multiple clutches, either by leaving two or more clutches with an individual male (22%), or by mating with two or more males (78%). The polyandrous females laid both the first and second clutches earlier and showed a breeding period more than twice as long as that of monandrous females. Both polyandry and seasonality affected the fate of a clutch, where clutches from polyandrous females and the early season had higher hatching and brood success rates, but the number of polyandrous females declined over the season. Polyandrous females not only laid more clutches and eggs, and gained more hatchlings and fledglings, but also achieved higher per-clutch outputs and hatching rates than monandrous females. In polyandry groups, males gained higher total hatchlings and fledglings, although not total clutches or eggs, than males in monandry or bi-andry groups. Moreover, males in polyandry groups achieved higher hatchlings and fledglings per clutch and higher hatching and brood success rates. In polyandry groups, the first-mating males obtained more clutches, eggs, and hatchlings; however, they did not have higher success rates, nor total fledglings and per-clutch outputs, than males who mated later. Overall, the results indicate a selective advantage of polyandry for the jacanas studied, particularly in the early breeding season. This advantage, however, differs both between the sexes and intra-sexually, suggesting strong connections with certain ecological/environmental conditions in addition to the jacanas’ own quality.","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"43 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140830210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.1186/s40851-024-00230-3
A Archidona-Yuste, I Clavero-Camacho, A N Ruiz-Cuenca, C Cantalapiedra-Navarrete, G Liebanas, P Castillo, J E Palomares-Rius
The ring nematode genus Xenocriconemella De Grisse and Loof, 1965 comprises only one nominal species, Xenocriconemella macrodora (Taylor, 1936) De Grisse and Loof, 1965. The initial objective of the present study was to investigate the morphological-morphometric and molecular diversity of 28 X. macrodora populations in the Iberian Peninsula associated with tree forests (mainly Quercus spp.). However, a detailed integrative taxonomic analysis (morphological-morphometric and molecular data) from each population and analysis of this data using principal component analysis (PCA) for morphometric data (including these 28 populations and other 25 X. macrodora populations around the world) and molecular and phylogenetic species delimitation methods revealed that X. macrodora forms a species complex. This species complex is composed by species that are morphometricly and morphologically similar, but clearly different at the molecular level. Three new species are described applying integrative taxonomy, namely as Xenocriconemella iberica sp. nov., Xenocriconemella paraiberica sp. nov. and Xenocriconemella pradense sp. nov. However, the molecular diversity of this species in USA and Italy confirmed that additional species are likely present in this species complex, and the diversity of this group may be higher than expected. The study of X. macrodora topotypes can clarify the position of this species using molecular markers under an integrative approach.
{"title":"The more we search, the more we find: discovering and expanding the biodiversity in the ring nematode genus Xenocriconemella De Grisse and Loof, 1965 (Nematoda: Criconematidae).","authors":"A Archidona-Yuste, I Clavero-Camacho, A N Ruiz-Cuenca, C Cantalapiedra-Navarrete, G Liebanas, P Castillo, J E Palomares-Rius","doi":"10.1186/s40851-024-00230-3","DOIUrl":"10.1186/s40851-024-00230-3","url":null,"abstract":"<p><p>The ring nematode genus Xenocriconemella De Grisse and Loof, 1965 comprises only one nominal species, Xenocriconemella macrodora (Taylor, 1936) De Grisse and Loof, 1965. The initial objective of the present study was to investigate the morphological-morphometric and molecular diversity of 28 X. macrodora populations in the Iberian Peninsula associated with tree forests (mainly Quercus spp.). However, a detailed integrative taxonomic analysis (morphological-morphometric and molecular data) from each population and analysis of this data using principal component analysis (PCA) for morphometric data (including these 28 populations and other 25 X. macrodora populations around the world) and molecular and phylogenetic species delimitation methods revealed that X. macrodora forms a species complex. This species complex is composed by species that are morphometricly and morphologically similar, but clearly different at the molecular level. Three new species are described applying integrative taxonomy, namely as Xenocriconemella iberica sp. nov., Xenocriconemella paraiberica sp. nov. and Xenocriconemella pradense sp. nov. However, the molecular diversity of this species in USA and Italy confirmed that additional species are likely present in this species complex, and the diversity of this group may be higher than expected. The study of X. macrodora topotypes can clarify the position of this species using molecular markers under an integrative approach.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"8"},"PeriodicalIF":2.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1186/s40851-024-00227-y
Tobias Theska, Tess Renahan, Ralf J Sommer
Nuclear hormone receptors (NHRs) are a deeply-conserved superfamily of metazoan transcription factors, which fine-tune the expression of their regulatory target genes in response to a plethora of sensory inputs. In nematodes, NHRs underwent an explosive expansion and many species have hundreds of nhr genes, most of which remain functionally uncharacterized. However, recent studies have reported that two sister receptors, Ppa-NHR-1 and Ppa-NHR-40, are crucial regulators of feeding-structure morphogenesis in the diplogastrid model nematode Pristionchus pacificus. In the present study, we functionally characterize Ppa-NHR-10, the sister paralog of Ppa-NHR-1 and Ppa-NHR-40, aiming to reveal whether it too regulates aspects of feeding-structure development. We used CRISPR/CAS9-mediated mutagenesis to create small frameshift mutations of this nuclear receptor gene and applied a combination of geometric morphometrics and unsupervised clustering to characterize potential mutant phenotypes. However, we found that Ppa-nhr-10 mutants do not show aberrant feeding-structure morphologies. Instead, multiple RNA-seq experiments revealed that many of the target genes of this receptor are involved in lipid catabolic processes. We hypothesized that their mis-regulation could affect the survival of mutant worms during starvation, where lipid catabolism is often essential. Indeed, using novel survival assays, we found that mutant worms show drastically decreased starvation resistance, both as young adults and as dauer larvae. We also characterized genome-wide changes to the transcriptional landscape in P. pacificus when exposed to 24 h of acute starvation, and found that Ppa-NHR-10 partially regulates some of these responses. Taken together, these results demonstrate that Ppa-NHR-10 is broadly required for starvation resistance and regulates different biological processes than its closest paralogs Ppa-NHR-1 and Ppa-NHR-40.
{"title":"Starvation resistance in the nematode Pristionchus pacificus requires a conserved supplementary nuclear receptor.","authors":"Tobias Theska, Tess Renahan, Ralf J Sommer","doi":"10.1186/s40851-024-00227-y","DOIUrl":"10.1186/s40851-024-00227-y","url":null,"abstract":"<p><p>Nuclear hormone receptors (NHRs) are a deeply-conserved superfamily of metazoan transcription factors, which fine-tune the expression of their regulatory target genes in response to a plethora of sensory inputs. In nematodes, NHRs underwent an explosive expansion and many species have hundreds of nhr genes, most of which remain functionally uncharacterized. However, recent studies have reported that two sister receptors, Ppa-NHR-1 and Ppa-NHR-40, are crucial regulators of feeding-structure morphogenesis in the diplogastrid model nematode Pristionchus pacificus. In the present study, we functionally characterize Ppa-NHR-10, the sister paralog of Ppa-NHR-1 and Ppa-NHR-40, aiming to reveal whether it too regulates aspects of feeding-structure development. We used CRISPR/CAS9-mediated mutagenesis to create small frameshift mutations of this nuclear receptor gene and applied a combination of geometric morphometrics and unsupervised clustering to characterize potential mutant phenotypes. However, we found that Ppa-nhr-10 mutants do not show aberrant feeding-structure morphologies. Instead, multiple RNA-seq experiments revealed that many of the target genes of this receptor are involved in lipid catabolic processes. We hypothesized that their mis-regulation could affect the survival of mutant worms during starvation, where lipid catabolism is often essential. Indeed, using novel survival assays, we found that mutant worms show drastically decreased starvation resistance, both as young adults and as dauer larvae. We also characterized genome-wide changes to the transcriptional landscape in P. pacificus when exposed to 24 h of acute starvation, and found that Ppa-NHR-10 partially regulates some of these responses. Taken together, these results demonstrate that Ppa-NHR-10 is broadly required for starvation resistance and regulates different biological processes than its closest paralogs Ppa-NHR-1 and Ppa-NHR-40.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"7"},"PeriodicalIF":2.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}