Chuanjian Yuan, Rong Fan, Kai Zhu, Yutong Wang, Wenpeng Xie, Yanchen Liang
{"title":"Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway.","authors":"Chuanjian Yuan, Rong Fan, Kai Zhu, Yutong Wang, Wenpeng Xie, Yanchen Liang","doi":"10.1177/15353702231220670","DOIUrl":null,"url":null,"abstract":"<p><p>Curcumin, an antitumor agent, has been shown to inhibit cell growth and metastasis in osteosarcoma. However, there is no evidence of curcumin and its regulation of cell ferroptosis and nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathways in osteosarcoma. This study aimed to investigate the effects of curcumin on osteosarcoma both <i>in vitro</i> and <i>in vivo</i>. To explore the effects and mechanisms of curcumin on osteosarcoma, cells (MNNG/HOS and MG-63) and xenograft mice models were established. Cell viability, cell apoptosis rate, cycle distribution, cell migration, cell invasion, reactive oxygen species, malonaldehyde and glutathione abilities, and protein levels were detected by cell counting kit-8, flow cytometry, wound healing, transwell assay, respectively. Nrf2 and GPX4 expressions were detected using an immunofluorescence assay. Nrf2/GPX4-related protein levels were detected using western blotting. The results showed that curcumin effectively decreased cell viability and increased apoptosis rate. Meanwhile, curcumin inhibited tumor volume in the xenograft model, and Nrf2/GPX4-related protein levels were also altered. Interestingly, the effects of curcumin were reversed by liproxstatin-1 (an effective inhibitor of ferroptosis) and bardoxolone-methyl (an effective activator of Nrf2). Our results indicate that curcumin has therapeutic effects on osteosarcoma cells and a xenograft model by regulating the expression of the Nrf2/GPX4 signaling pathway.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2183-2197"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231220670","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Curcumin, an antitumor agent, has been shown to inhibit cell growth and metastasis in osteosarcoma. However, there is no evidence of curcumin and its regulation of cell ferroptosis and nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathways in osteosarcoma. This study aimed to investigate the effects of curcumin on osteosarcoma both in vitro and in vivo. To explore the effects and mechanisms of curcumin on osteosarcoma, cells (MNNG/HOS and MG-63) and xenograft mice models were established. Cell viability, cell apoptosis rate, cycle distribution, cell migration, cell invasion, reactive oxygen species, malonaldehyde and glutathione abilities, and protein levels were detected by cell counting kit-8, flow cytometry, wound healing, transwell assay, respectively. Nrf2 and GPX4 expressions were detected using an immunofluorescence assay. Nrf2/GPX4-related protein levels were detected using western blotting. The results showed that curcumin effectively decreased cell viability and increased apoptosis rate. Meanwhile, curcumin inhibited tumor volume in the xenograft model, and Nrf2/GPX4-related protein levels were also altered. Interestingly, the effects of curcumin were reversed by liproxstatin-1 (an effective inhibitor of ferroptosis) and bardoxolone-methyl (an effective activator of Nrf2). Our results indicate that curcumin has therapeutic effects on osteosarcoma cells and a xenograft model by regulating the expression of the Nrf2/GPX4 signaling pathway.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.