Vajiheh Safavi-Rizi, Tina Uhlig, Felix Lutter, Hamid Safavi-Rizi, Franziska Krajinski-Barth, Severin Sasso
{"title":"Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of <i>Arabidopsis thaliana</i>.","authors":"Vajiheh Safavi-Rizi, Tina Uhlig, Felix Lutter, Hamid Safavi-Rizi, Franziska Krajinski-Barth, Severin Sasso","doi":"10.1080/15592324.2023.2300228","DOIUrl":null,"url":null,"abstract":"<p><p>The flooding of agricultural land leads to hypoxia and nitrate leaching. While understanding the plant's response to these conditions is essential for crop improvement, the effect of extended nitrate limitation on subsequent hypoxia has not been studied in an organ-specific manner. We cultivated <i>Arabidopsis thaliana</i> without nitrate for 1 week before inducing hypoxia by bubbling the hydroponic solution with nitrogen gas for 16 h. In the roots, the transcripts of two transcription factor genes (<i>HRA1</i>, <i>HRE2</i>) and three genes involved in fermentation (<i>SUS4</i>, <i>PDC1</i>, <i>ADH1</i>) were ~10- to 100-fold upregulated by simultaneous hypoxia and nitrate starvation compared to the control condition (replete nitrate and oxygen). In contrast, this hypoxic upregulation was ~5 to 10 times stronger when nitrate was available. The phytoglobin genes <i>PGB1</i> and <i>PGB2</i>, involved in nitric oxide (NO) scavenging, were massively downregulated by nitrate starvation (~1000-fold and 10<sup>5</sup>-fold, respectively), but only under ambient oxygen levels; this was reflected in a 2.5-fold increase in NO concentration. In the leaves, <i>HRA1</i>, <i>SUS4</i>, and <i>RAP2.3</i> were upregulated ~20-fold by hypoxia under nitrate starvation, whereas this upregulation was virtually absent in the presence of nitrate. Our results highlight that the plant's responses to nitrate starvation and hypoxia can influence each other.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2300228"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2023.2300228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The flooding of agricultural land leads to hypoxia and nitrate leaching. While understanding the plant's response to these conditions is essential for crop improvement, the effect of extended nitrate limitation on subsequent hypoxia has not been studied in an organ-specific manner. We cultivated Arabidopsis thaliana without nitrate for 1 week before inducing hypoxia by bubbling the hydroponic solution with nitrogen gas for 16 h. In the roots, the transcripts of two transcription factor genes (HRA1, HRE2) and three genes involved in fermentation (SUS4, PDC1, ADH1) were ~10- to 100-fold upregulated by simultaneous hypoxia and nitrate starvation compared to the control condition (replete nitrate and oxygen). In contrast, this hypoxic upregulation was ~5 to 10 times stronger when nitrate was available. The phytoglobin genes PGB1 and PGB2, involved in nitric oxide (NO) scavenging, were massively downregulated by nitrate starvation (~1000-fold and 105-fold, respectively), but only under ambient oxygen levels; this was reflected in a 2.5-fold increase in NO concentration. In the leaves, HRA1, SUS4, and RAP2.3 were upregulated ~20-fold by hypoxia under nitrate starvation, whereas this upregulation was virtually absent in the presence of nitrate. Our results highlight that the plant's responses to nitrate starvation and hypoxia can influence each other.