首页 > 最新文献

Plant signaling & behavior最新文献

英文 中文
Improving soybean drought tolerance via silicon-induced changes in growth, physiological, biochemical, and root characteristics. 通过硅诱导的生长、生理、生化和根部特征变化提高大豆的耐旱性。
Pub Date : 2025-12-01 Epub Date: 2025-02-24 DOI: 10.1080/15592324.2025.2465232
Malik Muhammad Abdullah, Ejaz Ahmad Waraich, Muhammad Ahmad, Saddam Hussain, Hafiz Naeem Asghar, Arslan Haider, Usman Zulfiqar, Zahoor Ahmad, Walid Soufan, Pv Vara Prasad, Ivica Djalovic

Drought-induced osmotic stress is a significant constraint to soybean growth and yield, necessitating the development of effective mitigation strategies. Silicon acts as an important strategy to mitigate the negative stress effects of drought stress. The study was aimed to evaluate the potential of soil-applied silicon in alleviating drought stress in soybean. Two field capacities were tested: control (85% FC) and drought (50% FC), with four silicon application rates (0, 100, 200, and 300 kg ha-1) applied at sowing. Drought stress significantly affected the morphological parameters in soybean as plant height, leaf area, and water potential were reduced by 25%, 20%, and 36%, respectively, while root length increased as compared to control-85% FC. However, drought stress reduced root density, surface area, and biomass as compared to control-85% FC. Additionally, drought reduced photosynthetic rates, chlorophyll a and b levels, and stomatal conductance, while increasing malondialdehyde and hydrogen peroxide. The natural plant defense system was upregulated, with increased activity of phenolics, soluble proteins, and antioxidant enzymes like catalase, superoxide dismutase, and peroxidase. However, silicon applications, especially at 200 kg ha-1, significantly alleviated the negative effects of drought stress by improving morphophysiological and biochemical traits in soybeans. Compared to the control, Si200 increased plant height, root length, photosynthetic rate, and water potential by 22%, 39%, 23%, and 17%, respectively, as compared to control. Furthermore, silicon reduced malondialdehyde and hydrogen peroxide levels by 21% and 10%, enhancing plant resilience. Silicon supplementation also boosted biochemical attributes, with total soluble proteins, phenolics, and antioxidant enzyme activities increasing by 30%, 55%, 19%, 24%, and 31%, respectively, under drought conditions. In crux, silicon at 200 kg ha-1 effectively mitigated the effects of drought stress in soybean, becoming a more sustainable approach to sustain crop yield and food security.

{"title":"Improving soybean drought tolerance via silicon-induced changes in growth, physiological, biochemical, and root characteristics.","authors":"Malik Muhammad Abdullah, Ejaz Ahmad Waraich, Muhammad Ahmad, Saddam Hussain, Hafiz Naeem Asghar, Arslan Haider, Usman Zulfiqar, Zahoor Ahmad, Walid Soufan, Pv Vara Prasad, Ivica Djalovic","doi":"10.1080/15592324.2025.2465232","DOIUrl":"10.1080/15592324.2025.2465232","url":null,"abstract":"<p><p>Drought-induced osmotic stress is a significant constraint to soybean growth and yield, necessitating the development of effective mitigation strategies. Silicon acts as an important strategy to mitigate the negative stress effects of drought stress. The study was aimed to evaluate the potential of soil-applied silicon in alleviating drought stress in soybean. Two field capacities were tested: control (85% FC) and drought (50% FC), with four silicon application rates (0, 100, 200, and 300 kg ha<sup>-1</sup>) applied at sowing. Drought stress significantly affected the morphological parameters in soybean as plant height, leaf area, and water potential were reduced by 25%, 20%, and 36%, respectively, while root length increased as compared to control-85% FC. However, drought stress reduced root density, surface area, and biomass as compared to control-85% FC. Additionally, drought reduced photosynthetic rates, chlorophyll a and b levels, and stomatal conductance, while increasing malondialdehyde and hydrogen peroxide. The natural plant defense system was upregulated, with increased activity of phenolics, soluble proteins, and antioxidant enzymes like catalase, superoxide dismutase, and peroxidase. However, silicon applications, especially at 200 kg ha<sup>-1</sup>, significantly alleviated the negative effects of drought stress by improving morphophysiological and biochemical traits in soybeans. Compared to the control, Si<sub>200</sub> increased plant height, root length, photosynthetic rate, and water potential by 22%, 39%, 23%, and 17%, respectively, as compared to control. Furthermore, silicon reduced malondialdehyde and hydrogen peroxide levels by 21% and 10%, enhancing plant resilience. Silicon supplementation also boosted biochemical attributes, with total soluble proteins, phenolics, and antioxidant enzyme activities increasing by 30%, 55%, 19%, 24%, and 31%, respectively, under drought conditions. In crux, silicon at 200 kg ha<sup>-1</sup> effectively mitigated the effects of drought stress in soybean, becoming a more sustainable approach to sustain crop yield and food security.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2465232"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein targeting to Starch 2 and the plastidial phosphorylase 1 revealed protein-protein interactions with photosynthesis proteins in yeast two-hybrid screenings. 在酵母双杂交筛选中,淀粉 2 和质体磷酸化酶 1 的蛋白质靶向揭示了蛋白质与光合作用蛋白质之间的相互作用。
Pub Date : 2025-12-01 Epub Date: 2025-02-26 DOI: 10.1080/15592324.2025.2470775
Sidratul Nur Muntaha, Joerg Fettke

Starch metabolism in plants involves a complex network of interacting proteins that work together to ensure the efficient synthesis and degradation of starch. These interactions are crucial for regulating the balance between energy storage and release, adapting to the plant's developmental stage and environmental conditions. Several studies have been performed to investigate protein-protein interactions (PPIs) in starch metabolism complexes, yet it remains impossible to unveil all of the PPIs in this highly regulated process. This study uses yeast-two-hybrid (Y2H) screening against the Arabidopsis leaf cDNA library to explore PPIs, focusing on the starch-granule-initiating protein named Protein Targeting to Starch 2 (PTST2, At1g27070) and the protein involved in starch and maltodextrin metabolism, namely, plastidial phosphorylase 1 (PHS1, EC 2.4.1.1). More than 100 positive interactions were sequenced, and we found chloroplastidial proteins to be putative interacting partners of PTST2 and PHS1. Among them, photosynthetic proteins were discovered. These novel interactions could reveal new roles of PTST2 and PHS1 in the connection between starch metabolism and photosynthesis. This dynamic interplay between starch metabolism and other chloroplast functions highlights the importance of starch as both an energy reservoir and a regulatory component in the broader context of plant physiology and adaptation.

{"title":"Protein targeting to Starch 2 and the plastidial phosphorylase 1 revealed protein-protein interactions with photosynthesis proteins in yeast two-hybrid screenings.","authors":"Sidratul Nur Muntaha, Joerg Fettke","doi":"10.1080/15592324.2025.2470775","DOIUrl":"10.1080/15592324.2025.2470775","url":null,"abstract":"<p><p>Starch metabolism in plants involves a complex network of interacting proteins that work together to ensure the efficient synthesis and degradation of starch. These interactions are crucial for regulating the balance between energy storage and release, adapting to the plant's developmental stage and environmental conditions. Several studies have been performed to investigate protein-protein interactions (PPIs) in starch metabolism complexes, yet it remains impossible to unveil all of the PPIs in this highly regulated process. This study uses yeast-two-hybrid (Y2H) screening against the Arabidopsis leaf cDNA library to explore PPIs, focusing on the starch-granule-initiating protein named Protein Targeting to Starch 2 (PTST2, At1g27070) and the protein involved in starch and maltodextrin metabolism, namely, plastidial phosphorylase 1 (PHS1, EC 2.4.1.1). More than 100 positive interactions were sequenced, and we found chloroplastidial proteins to be putative interacting partners of PTST2 and PHS1. Among them, photosynthetic proteins were discovered. These novel interactions could reveal new roles of PTST2 and PHS1 in the connection between starch metabolism and photosynthesis. This dynamic interplay between starch metabolism and other chloroplast functions highlights the importance of starch as both an energy reservoir and a regulatory component in the broader context of plant physiology and adaptation.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2470775"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterologous expression of SpsTAC2 in Arabidopsis affected branch angle and secondary vascular system development.
Pub Date : 2025-12-01 Epub Date: 2025-02-05 DOI: 10.1080/15592324.2025.2450821
Fangshu Niu, Mengru Yuan, Hongxia Zhao, Zhi Pang, Jie Yan, RuiXie Ning, Lin Shi, Fengqiang Yu, Dongshan Wei, Rong Yang, Runming Zhang, Haifeng Yang

To investigate the biological functions of Tiller Angle Control 2 (TAC2) in Salix psammophila. In this study, TAC2 was cloned from Salix psammophila, and an overexpression and subcellular localization expression vector for the SpsTAC2 gene was constructed. The SpsTAC2 gene was overexpressed in Arabidopsis and analyzed for phenotypic changes. The subcellular localization of SpsTAC2 was analyzed via Agrobacterium-mediated transient expression in onion (Allium cepa L.) epidermal cells. Phenotypic characterization of SpsTAC2 overexpressing Arabidopsis strains revealed that the branching angle of the transgenic strains was significantly greater than that of the wild type, and the anatomical structures of the stems and hypocotyls of the transgenic strains indicated that the vascular system of the transgenic strains developed more slowly than did that of the wild type. The subcellular localization of the SpsTAC2 gene revealed that the localization signals of the SpsTAC2 gene were mainly in the nucleus, and weak signals also appeared in the cell membrane, suggesting that the SpsTAC2 gene was mainly expressed mainly in the nucleus, with a small amount of expression in the cell membrane. This findings suggest that the SpsTAC2 gene influences the development of the branching angle of plants and xylem, and exerts its effects mainly in the nucleus and membrane. This study can help to characterize the regulatory effect of the TAC gene on the branching angle and explore its effect on the branching angle and vascular system development, and also help to explore the possible molecular regulatory mechanism, which can provide a theoretical basis for further elucidation of the mechanism of action of the IGT gene family.

{"title":"Heterologous expression of <i>SpsTAC2</i> in Arabidopsis affected branch angle and secondary vascular system development.","authors":"Fangshu Niu, Mengru Yuan, Hongxia Zhao, Zhi Pang, Jie Yan, RuiXie Ning, Lin Shi, Fengqiang Yu, Dongshan Wei, Rong Yang, Runming Zhang, Haifeng Yang","doi":"10.1080/15592324.2025.2450821","DOIUrl":"10.1080/15592324.2025.2450821","url":null,"abstract":"<p><p>To investigate the biological functions of <i>Tiller Angle Control 2</i> (<i>TAC2</i>) in <i>Salix psammophila</i>. In this study, <i>TAC2</i> was cloned from <i>Salix psammophila</i>, and an overexpression and subcellular localization expression vector for the <i>SpsTAC2</i> gene was constructed. The <i>SpsTAC2</i> gene was overexpressed in Arabidopsis and analyzed for phenotypic changes. The subcellular localization of <i>SpsTAC2</i> was analyzed via <i>Agrobacterium</i>-mediated transient expression in onion (<i>Allium cepa L</i>.) epidermal cells. Phenotypic characterization of <i>SpsTAC2</i> overexpressing Arabidopsis strains revealed that the branching angle of the transgenic strains was significantly greater than that of the wild type, and the anatomical structures of the stems and hypocotyls of the transgenic strains indicated that the vascular system of the transgenic strains developed more slowly than did that of the wild type. The subcellular localization of the <i>SpsTAC2</i> gene revealed that the localization signals of the <i>SpsTAC2</i> gene were mainly in the nucleus, and weak signals also appeared in the cell membrane, suggesting that the <i>SpsTAC2</i> gene was mainly expressed mainly in the nucleus, with a small amount of expression in the cell membrane. This findings suggest that the <i>SpsTAC2</i> gene influences the development of the branching angle of plants and xylem, and exerts its effects mainly in the nucleus and membrane. This study can help to characterize the regulatory effect of the <i>TAC</i> gene on the branching angle and explore its effect on the branching angle and vascular system development, and also help to explore the possible molecular regulatory mechanism, which can provide a theoretical basis for further elucidation of the mechanism of action of the <i>IGT</i> gene family.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2450821"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous ethanol treatment promotes glycyrrhizin accumulation in aseptically grown Glycyrrhiza uralensis seedlings.
Pub Date : 2025-12-01 Epub Date: 2025-02-27 DOI: 10.1080/15592324.2025.2472012
Yuto Nishidono, Ken Tanaka

Licorice, the dried roots and rhizomes of Glycyrrhiza uralensis Fisch., is one of the most popular herbal medicines used globally. Glycyrrhizin is the primary bioactive component of licorice, exhibiting various pharmacological activities. Herein, we grew G. uralensis seedlings aseptically on a medium in the presence of 0-1% ethanol for 10 weeks, elucidating the effect of exogenous ethanol treatment on plant morphological features and glycyrrhizin accumulation. Treatment with 0.1% exogenous ethanol significantly increased the root fresh weight of G. uralensis seedlings, whereas treatments exceeding 0.5% exogenous ethanol exhibited phytotoxicity. In addition, the application of 0.1% exogenous ethanol significantly promoted glycyrrhizin accumulation in plant roots relative to the control. Overall, these results indicate that dilute exogenous ethanol treatment positively affects root yield and glycyrrhizin accumulation in the roots of aseptically cultured G. uralensis seedlings. The findings of this study may contribute to improving the quality of cultivated G. uralensis.

{"title":"Exogenous ethanol treatment promotes glycyrrhizin accumulation in aseptically grown <i>Glycyrrhiza uralensis</i> seedlings.","authors":"Yuto Nishidono, Ken Tanaka","doi":"10.1080/15592324.2025.2472012","DOIUrl":"10.1080/15592324.2025.2472012","url":null,"abstract":"<p><p>Licorice, the dried roots and rhizomes of <i>Glycyrrhiza uralensis</i> Fisch., is one of the most popular herbal medicines used globally. Glycyrrhizin is the primary bioactive component of licorice, exhibiting various pharmacological activities. Herein, we grew <i>G. uralensis</i> seedlings aseptically on a medium in the presence of 0-1% ethanol for 10 weeks, elucidating the effect of exogenous ethanol treatment on plant morphological features and glycyrrhizin accumulation. Treatment with 0.1% exogenous ethanol significantly increased the root fresh weight of <i>G. uralensis</i> seedlings, whereas treatments exceeding 0.5% exogenous ethanol exhibited phytotoxicity. In addition, the application of 0.1% exogenous ethanol significantly promoted glycyrrhizin accumulation in plant roots relative to the control. Overall, these results indicate that dilute exogenous ethanol treatment positively affects root yield and glycyrrhizin accumulation in the roots of aseptically cultured <i>G. uralensis</i> seedlings. The findings of this study may contribute to improving the quality of cultivated <i>G. uralensis</i>.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2472012"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of ORP1C gene increases the rice resistance to Xanthomonas oryzae pv. oryzae through negatively regulating transcription activator-like effectors translocation. ORP1C基因的过表达增加了水稻对水稻黄单胞菌的抗性。Oryzae通过负调控转录激活子样效应子易位。
Pub Date : 2025-12-01 Epub Date: 2024-12-24 DOI: 10.1080/15592324.2024.2441864
Hongtao Ji, Lan Zhou, Ruibin Yang, Mingliang Xu, Hengjie Qian, Jingyi Tong, Mengjie Sun

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has shown a high incidence rate in rice fields in recent years. Rice resistance breeding is considered as the most effective method for achieving economical and sustainable management of BLB disease. The essential basis for resistance breeding is rooted in the exploration of rice resistance genes and the clarification of the molecular mechanisms that underlie Xoo resistance. In our previous research, we showed that Xanthomonas outer protein XopZ and rice oxysterol-binding related protein ORP1C collaboratively regulate the compatible interaction between Xoo strain PXO99 and Nipponbare rice, but the deeper regulatory mechanisms remain unknown. In this study, we successfully constructed ORP1C overexpression rice using the plant binary expression vector pCAMBIA1301. Through a series of virulence and effector translocation detections in Xoo-rice interactions, we revealed that overexpression of the ORP1C gene largely increases rice resistance to multiple Xoo strains from different countries and regions. Mechanistically, ORP1C plays a Xoo resistant role through negatively regulating transcription activator-like effectors (TALEs) translocation, ORP1C has become a potential candidate gene resource for disease-resistant breeding in rice. Further studies also indicated that XopZ and ORP1C collaboratively regulate the compatible interaction of PXO99-Nipponbare by modulating TALEs translocation.

水稻黄单胞菌引起的细菌性叶枯病。近年来,稻瘟热(Xoo)在稻田中呈现出较高的发病率。水稻抗性育种被认为是实现经济和可持续管理白粉病的最有效方法。抗性育种的基本基础是对水稻抗性基因的探索和对Xoo抗性分子机制的阐明。在我们之前的研究中,我们发现黄单胞菌外蛋白XopZ和水稻氧甾醇结合相关蛋白ORP1C共同调控Xoo菌株PXO99与水稻的亲和互作,但更深层次的调控机制尚不清楚。本研究利用植物二值表达载体pCAMBIA1301成功构建了ORP1C过表达水稻。通过一系列Xoo-水稻相互作用的毒力和效应易位检测,我们发现ORP1C基因的过表达在很大程度上增加了水稻对来自不同国家和地区的多个Xoo菌株的抗性。从机制上讲,ORP1C通过负调控转录激活因子样效应物(transcription activator-like efftors, TALEs)易位发挥Xoo抗性作用,ORP1C已成为水稻抗病育种的潜在候选基因资源。进一步的研究还表明,XopZ和ORP1C通过调节TALEs易位协同调节PXO99-Nipponbare的兼容互作。
{"title":"Overexpression of <i>ORP1C</i> gene increases the rice resistance to <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> through negatively regulating transcription activator-like effectors translocation.","authors":"Hongtao Ji, Lan Zhou, Ruibin Yang, Mingliang Xu, Hengjie Qian, Jingyi Tong, Mengjie Sun","doi":"10.1080/15592324.2024.2441864","DOIUrl":"https://doi.org/10.1080/15592324.2024.2441864","url":null,"abstract":"<p><p>Bacterial leaf blight (BLB) caused by <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>) has shown a high incidence rate in rice fields in recent years. Rice resistance breeding is considered as the most effective method for achieving economical and sustainable management of BLB disease. The essential basis for resistance breeding is rooted in the exploration of rice resistance genes and the clarification of the molecular mechanisms that underlie <i>Xoo</i> resistance. In our previous research, we showed that <i>Xanthomonas</i> outer protein XopZ and rice oxysterol-binding related protein ORP1C collaboratively regulate the compatible interaction between <i>Xoo</i> strain PXO99 and Nipponbare rice, but the deeper regulatory mechanisms remain unknown. In this study, we successfully constructed <i>ORP1C</i> overexpression rice using the plant binary expression vector pCAMBIA1301. Through a series of virulence and effector translocation detections in <i>Xoo</i>-rice interactions, we revealed that overexpression of the <i>ORP1C</i> gene largely increases rice resistance to multiple <i>Xoo</i> strains from different countries and regions. Mechanistically, ORP1C plays a <i>Xoo</i> resistant role through negatively regulating transcription activator-like effectors (TALEs) translocation, <i>ORP1C</i> has become a potential candidate gene resource for disease-resistant breeding in rice. Further studies also indicated that XopZ and ORP1C collaboratively regulate the compatible interaction of PXO99-Nipponbare by modulating TALEs translocation.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2441864"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142886598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. 长柄草中两种化合物对小麦害虫禾裂蚜乙酰胆碱酯酶抑制活性的研究。
Pub Date : 2025-12-01 Epub Date: 2024-12-19 DOI: 10.1080/15592324.2024.2444311
Rasmané Guiré, Pousbila Salo, Eliasse Zongo, Mohamed Fawzy Ramadan, Benjamin Kouliga Koama, Roland Nag-Tiero Meda, Fahad Al-Asmari, Muhammad Abdul Rahim

Wheat is the third most widely consumed cereal in the world, after maize and rice. However, it is regularly attacked by the wheat aphid (Schizaphis graminum), causing considerable damage to wheat crops. The acetylcholinesterase enzyme, which plays a key role in the transmission of the synaptic cholinergic signal, has emerged as a promising target for the development of pest control strategies. Inhibition of this enzyme leads to the paralysis or even death of the aphid. The objective of this study is to identify the bioactive compounds in Securidaca longepedunculata (S. longepedunculata) that are capable of interacting with acetylcholinesterase from Schizaphis graminum and inhibiting its activity. Furthermore, a computer simulation of these compounds in interaction with the key protein was conducted. First, the secondary metabolites of S. longepedunculata were selected on the basis of GC-MS data available from specific reference sources. Subsequently, the compounds were subjected to virtual screening based on their docking scores in order to identify those with inhibitory properties. The compounds with the highest scores were subjected to molecular dynamics simulation over a 50 ns trajectory. Subsequently, MMGBSA free energy calculations were conducted. The results demonstrated that eight compounds exhibited inhibitory properties, four of which (echimidine, populin, salidroside, and farrerol) demonstrated superior stabilizing effects on proteins compared to the remaining compounds. In terms of free energy by MMGBSA and molecular simulation, it was observed that echimidine and populin formed robust and stable hydrogen bonds with the amino acids of the acetylcholinesterase enzyme. This study identifies and attempts to validate the potential inhibitory activities of echimidine and populin against acetylcholinesterase, with a view to developing potent insecticides and unique treatment strategies.

小麦是世界上消费最广泛的第三大谷物,仅次于玉米和大米。然而,它经常受到小麦蚜虫(Schizaphis graminum)的攻击,对小麦作物造成相当大的损害。乙酰胆碱酯酶在突触胆碱能信号的传递中起着关键作用,已成为害虫防治策略发展的一个有希望的目标。抑制这种酶会导致蚜虫瘫痪甚至死亡。摘要本研究的目的是鉴定出能与禾本科裂蚜(Schizaphis graminum)乙酰胆碱酯酶相互作用并抑制其活性的长柄棘草(S. longepedunculata)中的活性化合物。此外,计算机模拟了这些化合物与关键蛋白的相互作用。首先,根据特定参考来源的GC-MS数据,选择长柄参的次生代谢物。随后,根据对接分数对化合物进行虚拟筛选,以确定具有抑制特性的化合物。对得分最高的化合物进行了50 ns轨迹的分子动力学模拟。随后进行MMGBSA自由能计算。结果表明,8种化合物表现出抑制作用,其中4种化合物(阿希米啶、白杨苷、红景天苷和法罗罗)对蛋白质的稳定作用优于其他化合物。在自由能方面,通过MMGBSA和分子模拟,观察到针叶胺和populin与乙酰胆碱酯酶的氨基酸形成坚固稳定的氢键。本研究旨在鉴定并验证针脒和populin对乙酰胆碱酯酶的潜在抑制活性,以期开发有效的杀虫剂和独特的治疗策略。
{"title":"The inhibitory activities of two compounds from <i>Securidaca longepedunculata</i> Fresen on the acetylcholinesterase from wheat pest <i>Schizaphis graminum</i> Rondani: <i>in silico</i> analysis.","authors":"Rasmané Guiré, Pousbila Salo, Eliasse Zongo, Mohamed Fawzy Ramadan, Benjamin Kouliga Koama, Roland Nag-Tiero Meda, Fahad Al-Asmari, Muhammad Abdul Rahim","doi":"10.1080/15592324.2024.2444311","DOIUrl":"10.1080/15592324.2024.2444311","url":null,"abstract":"<p><p>Wheat is the third most widely consumed cereal in the world, after maize and rice. However, it is regularly attacked by the wheat aphid (<i>Schizaphis graminum</i>), causing considerable damage to wheat crops. The acetylcholinesterase enzyme, which plays a key role in the transmission of the synaptic cholinergic signal, has emerged as a promising target for the development of pest control strategies. Inhibition of this enzyme leads to the paralysis or even death of the aphid. The objective of this study is to identify the bioactive compounds in <i>Securidaca longepedunculata (S. longepedunculata)</i> that are capable of interacting with acetylcholinesterase from <i>Schizaphis graminum</i> and inhibiting its activity. Furthermore, a computer simulation of these compounds in interaction with the key protein was conducted. First, the secondary metabolites of <i>S. longepedunculata</i> were selected on the basis of GC-MS data available from specific reference sources. Subsequently, the compounds were subjected to virtual screening based on their docking scores in order to identify those with inhibitory properties. The compounds with the highest scores were subjected to molecular dynamics simulation over a 50 ns trajectory. Subsequently, MMGBSA free energy calculations were conducted. The results demonstrated that eight compounds exhibited inhibitory properties, four of which (echimidine, populin, salidroside, and farrerol) demonstrated superior stabilizing effects on proteins compared to the remaining compounds. In terms of free energy by MMGBSA and molecular simulation, it was observed that echimidine and populin formed robust and stable hydrogen bonds with the amino acids of the acetylcholinesterase enzyme. This study identifies and attempts to validate the potential inhibitory activities of echimidine and populin against acetylcholinesterase, with a view to developing potent insecticides and unique treatment strategies.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2444311"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenously applied ABA alleviates dysplasia of maize (Zea mays L.) ear under drought stress by altering photosynthesis and sucrose transport.
Pub Date : 2025-12-01 Epub Date: 2025-02-05 DOI: 10.1080/15592324.2025.2462497
Zizhu Jiang, Yu Peng Li, Ping Zhuo Gai, Jinsheng Gao, Lijian Xu

Drought stress inhibits the development of maize ears. Abscisic acid (ABA) is a plant hormone that can regulate the physicology metabolism under abiotic stress. In this study, maize varieties Zhengdan 958 (ZD958) and Xianyu 335 (XY335) with different filling stages were used as materials. Three treatments were set in the filling period: normal irrigation (CK), drought stress (stress); exogenous ABA + drought stress (ABA+stress). They were used to study the physiological regulation of exogenous ABA on maize ears development during drought stress. Exogenous ABA inhibited bald tip and the decline of maize plant biomass, and increased the number and weight of grains per ear at harvest under drought stress by regulating photosynthetic pigment content (Chla, Chlb, Car), gas exchange parameters (Pn, Tr, gs, Ci, Ls), Chla fluorescence parameters (Fv/Fm, ФPSII, ETR, qP, NPQ), chloroplast structure and function, photosynthetic enzyme activity, and the transcription level of genes coding SUTs (ZmSUT1, ZmSUT2, ZmSUT4, ZmSUT6). There was a significant correlation between physiological indexes of sucrose loading in maize and yield factors. This study discussed the mechanism of exogenous ABA alleviating maize ear dysplasia at grain filling stage under drought stress from the perspective of photosynthesis and sucrose transport.

{"title":"Exogenously applied ABA alleviates dysplasia of maize (<i>Zea mays</i> L.) ear under drought stress by altering photosynthesis and sucrose transport.","authors":"Zizhu Jiang, Yu Peng Li, Ping Zhuo Gai, Jinsheng Gao, Lijian Xu","doi":"10.1080/15592324.2025.2462497","DOIUrl":"10.1080/15592324.2025.2462497","url":null,"abstract":"<p><p>Drought stress inhibits the development of maize ears. Abscisic acid (ABA) is a plant hormone that can regulate the physicology metabolism under abiotic stress. In this study, maize varieties Zhengdan 958 (ZD958) and Xianyu 335 (XY335) with different filling stages were used as materials. Three treatments were set in the filling period: normal irrigation (CK), drought stress (stress); exogenous ABA + drought stress (ABA+stress). They were used to study the physiological regulation of exogenous ABA on maize ears development during drought stress. Exogenous ABA inhibited bald tip and the decline of maize plant biomass, and increased the number and weight of grains per ear at harvest under drought stress by regulating photosynthetic pigment content (Chla, Chlb, Car), gas exchange parameters (Pn, Tr, gs, Ci, Ls), Chla fluorescence parameters (Fv/Fm, ФPSII, ETR, qP, NPQ), chloroplast structure and function, photosynthetic enzyme activity, and the transcription level of genes coding SUTs (ZmSUT1, ZmSUT2, ZmSUT4, ZmSUT6). There was a significant correlation between physiological indexes of sucrose loading in maize and yield factors. This study discussed the mechanism of exogenous ABA alleviating maize ear dysplasia at grain filling stage under drought stress from the perspective of photosynthesis and sucrose transport.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2462497"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture. 探索耐旱、产iaa、促植物生长的根瘤菌在可持续农业中的作用。
Pub Date : 2025-12-01 Epub Date: 2025-01-15 DOI: 10.1080/15592324.2025.2452331
Malika Uzma, Atif Nisar, Atia Iqbal, Shahida Hasnain, Mohamed H Mahmoud, Muhammad Abdul Rahim, Tehseen Gull, Roberto Castro-Muñoz, Eliasse Zongo

The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics. A total of 199 rhizobacteria were isolated and screened for IAA production. The strain M28 produced maximum IAA 378.44 ± 2.5 µg ml-1, M9 formed only 34.72 ± 0.15 µg ml-1. About 19% of IAA producers were isolated from Multan, 18% Lahore, 15% from soils of Faisalabad and Sheikhupura, while 7% from Gujrat. The 21 isolates were drought tolerant to -0.14Mpa, 14 of those were PSB and 15 were N fixers. In PGP traits, maximum zinc solubility was expressed by M4 as 2 ± 0.5 cm of zone. The strain M22 produced amount of HCN, 40.12 ± 0.052 ppm. All isolates showed diverse behavior in biocompatibility, motility patterns and hydrophobicity. Selected drought tolerant strains were genetically identified by ribotyping. Multitrait PGPR could be effective biofertilizers rather than with single trait. The strain M28 having highest production of IAA, was gelatinase, methyl red positive and was also capable of nitrogen fixation. Moreover, it had maximum swimming (8.9 mm) and swarming (8.7 mm) activities after 24 h, indicating its best PGP traits for future use.

不断增长的人口和非生物胁迫对粮食安全构成了重大威胁,PGPR是植物生长和缓解胁迫的有利生物肥料。在一项研究中,利用来自不同城市的栽培和未栽培植物的土壤样本分离根细菌种群。利用50份栽培和未栽培植物的土壤样品,对分离的根细菌群体进行了生化变化、PGP活性和形态特征的筛选。共分离得到199个产IAA根瘤菌。菌株M28产生的IAA最大值为378.44±2.5µg ml-1,菌株M9产生的IAA最大值为34.72±0.15µg ml-1。大约19%的IAA生产者来自木尔坦,18%来自拉合尔,15%来自费萨拉巴德和谢库普拉,7%来自古吉拉特邦。21株耐-0.14Mpa,其中14株为PSB, 15株为固氮菌。在PGP性状中,M4表达的最大锌溶解度为2±0.5 cm。菌株M22产生HCN的量为40.12±0.052 ppm。所有菌株在生物相容性、运动模式和疏水性方面表现出不同的行为。通过核分型对所选耐旱菌株进行遗传鉴定。多性状PGPR比单性状PGPR更能成为有效的生物肥料。菌株M28的IAA产量最高,是明胶酶,甲基红阳性,并具有固氮能力。24 h后游动(8.9 mm)和蜂群(8.7 mm)活性最高,表明其具有最佳的PGP性状。
{"title":"Exploring the efficacy of drought tolerant, IAA-producing plant growth-promoting rhizobacteria for sustainable agriculture.","authors":"Malika Uzma, Atif Nisar, Atia Iqbal, Shahida Hasnain, Mohamed H Mahmoud, Muhammad Abdul Rahim, Tehseen Gull, Roberto Castro-Muñoz, Eliasse Zongo","doi":"10.1080/15592324.2025.2452331","DOIUrl":"10.1080/15592324.2025.2452331","url":null,"abstract":"<p><p>The growing human population and abiotic stresses pose significant threats to food security, with PGPR favorable as biofertilizers for plant growth and stress relief. In one study, soil samples from both cultivated and uncultivated plants in various cities were used to isolate rhizobacterial populations. Using 50 soil samples from both cultivated and uncultivated plants, isolated rhizobacterial populations were screened for various biochemical changes, PGP activities and morphological characteristics. A total of 199 rhizobacteria were isolated and screened for IAA production. The strain M28 produced maximum IAA 378.44 ± 2.5 µg ml<sup>-1</sup>, M9 formed only 34.72 ± 0.15 µg ml<sup>-1</sup>. About 19% of IAA producers were isolated from Multan, 18% Lahore, 15% from soils of Faisalabad and Sheikhupura, while 7% from Gujrat. The 21 isolates were drought tolerant to -0.14Mpa, 14 of those were PSB and 15 were N fixers. In PGP traits, maximum zinc solubility was expressed by M4 as 2 ± 0.5 cm of zone. The strain M22 produced amount of HCN, 40.12 ± 0.052 ppm. All isolates showed diverse behavior in biocompatibility, motility patterns and hydrophobicity. Selected drought tolerant strains were genetically identified by ribotyping. Multitrait PGPR could be effective biofertilizers rather than with single trait. The strain M28 having highest production of IAA, was gelatinase, methyl red positive and was also capable of nitrogen fixation. Moreover, it had maximum swimming (8.9 mm) and swarming (8.7 mm) activities after 24 h, indicating its best PGP traits for future use.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2452331"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational identification and experimental validation of novel Saccharum officinarum microRNAs along with their targets through RT-PCR approach.
Pub Date : 2025-12-01 Epub Date: 2025-01-28 DOI: 10.1080/15592324.2025.2452334
Abdul Baqi, Samiullah, Jadoon Khan, Asma Sadiq, Yousaf Khan, Shahid Ali, Syed Nadeem Ul Hassan Mohani, Naqeebullah Khan, Tawaf Ali Shah, Khalid S Almaary, Youssouf Ali Younous, Mohammed Bourhia

Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using in silico tools, while also offering a preliminary assessment of their functions. This was accomplished by predicting novel conserved miRNAs in sugarcane plants using a variety of genomics-based techniques like BLASTn, MFOLD, psRNA Target, sequence logo, Weblogo, primer-3, etc. and annotated using miRBase and NCBI. For validation, RT-PCR method was used along with agarose gel. After the preparation of fourteen randomly chosen primers, they were validated by RT-PCR. Accordingly, they contain fifty specific targeted proteins with substantial targets in the structural, transcriptional protein, etc. Furthermore, the sof-miR5025a directs the heat repeat protein while the voltage-dependent anion is governed by sof-miR8005a. Similarly, the sof-miR7768b and sof-miR6249b monitor the pathogenesis-related protein and zinc finger, C2H2 type protein, which assist as transcription factors. Thus, the novel sugarcane miRNAs target a wide range of important genes help regulate the environment for sugarcane to generate a higher-quality crop.

{"title":"Computational identification and experimental validation of novel <i>Saccharum officinarum</i> microRNAs along with their targets through RT-PCR approach.","authors":"Abdul Baqi, Samiullah, Jadoon Khan, Asma Sadiq, Yousaf Khan, Shahid Ali, Syed Nadeem Ul Hassan Mohani, Naqeebullah Khan, Tawaf Ali Shah, Khalid S Almaary, Youssouf Ali Younous, Mohammed Bourhia","doi":"10.1080/15592324.2025.2452334","DOIUrl":"10.1080/15592324.2025.2452334","url":null,"abstract":"<p><p>Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using <i>in silico</i> tools, while also offering a preliminary assessment of their functions. This was accomplished by predicting novel conserved miRNAs in sugarcane plants using a variety of genomics-based techniques like BLASTn, MFOLD, psRNA Target, sequence logo, Weblogo, primer-3, etc. and annotated using miRBase and NCBI. For validation, RT-PCR method was used along with agarose gel. After the preparation of fourteen randomly chosen primers, they were validated by RT-PCR. Accordingly, they contain fifty specific targeted proteins with substantial targets in the structural, transcriptional protein, etc. Furthermore, the sof-miR5025a directs the heat repeat protein while the voltage-dependent anion is governed by sof-miR8005a. Similarly, the sof-miR7768b and sof-miR6249b monitor the pathogenesis-related protein and zinc finger, C<sub>2</sub>H<sub>2</sub> type protein, which assist as transcription factors. Thus, the novel sugarcane miRNAs target a wide range of important genes help regulate the environment for sugarcane to generate a higher-quality crop.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2452334"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The biochemical and molecular mechanisms of plants: a review on insect herbivory. 植物的生物化学和分子机制:昆虫食草性研究进展。
Pub Date : 2025-12-01 Epub Date: 2024-12-26 DOI: 10.1080/15592324.2024.2439248
Afeez Adesina Adedayo, Richard Musser, Mari Aanaenson, Olubukola Oluranti Babalola

Biochemical and molecular mechanisms have been essential mechanisms to reduce various insect attacks on plants. The biochemical methods are wide involving direct and indirect defenses. The defensive chemical substances are secreted effectively to the wound caused by the herbivores (insects and phytopathogens) on plants. Plants responded by producing VOCs which draw the natural enemies of the insects and phytopathogens. The progress observed in the cognition of the stimulus in plants and their potential to control the responses is characterized by the modification observed in molecular mechanisms which shifts our attention to the development of the endogenous resistance methods of preserving crops. The main objective of implementing a biotechnological mechanism in crop production is to employ durable and multimechanistic alternatives to insect pests via the stimulus the plant produces upon encountering the insect attack.

生物化学和分子机制是减少各种昆虫侵害植物的重要机制。生物化学方法涉及广泛,包括直接防御和间接防御。植物上的食草动物(昆虫和植物病原体)对植物造成的伤口会有效地分泌防御性化学物质。植物的反应是产生挥发性有机化合物,吸引昆虫和植物病原体的天敌。在植物对刺激的认知及其控制反应的潜力方面所观察到的进展是以观察到的分子机制的修饰为特征的,这将我们的注意力转移到作物内源抗性保存方法的发展上。在作物生产中实施生物技术机制的主要目标是通过植物在遇到昆虫攻击时产生的刺激,采用持久和多机制的替代品来替代害虫。
{"title":"The biochemical and molecular mechanisms of plants: a review on insect herbivory.","authors":"Afeez Adesina Adedayo, Richard Musser, Mari Aanaenson, Olubukola Oluranti Babalola","doi":"10.1080/15592324.2024.2439248","DOIUrl":"https://doi.org/10.1080/15592324.2024.2439248","url":null,"abstract":"<p><p>Biochemical and molecular mechanisms have been essential mechanisms to reduce various insect attacks on plants. The biochemical methods are wide involving direct and indirect defenses. The defensive chemical substances are secreted effectively to the wound caused by the herbivores (insects and phytopathogens) on plants. Plants responded by producing VOCs which draw the natural enemies of the insects and phytopathogens. The progress observed in the cognition of the stimulus in plants and their potential to control the responses is characterized by the modification observed in molecular mechanisms which shifts our attention to the development of the endogenous resistance methods of preserving crops. The main objective of implementing a biotechnological mechanism in crop production is to employ durable and multimechanistic alternatives to insect pests via the stimulus the plant produces upon encountering the insect attack.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2439248"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant signaling & behavior
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1