Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

Soronzonbold Otgonbaatar;Dieter Kranzlmüller
{"title":"Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment","authors":"Soronzonbold Otgonbaatar;Dieter Kranzlmüller","doi":"10.1109/TQE.2023.3338970","DOIUrl":null,"url":null,"abstract":"This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess some parameterized quantum circuit models transpiled into a Clifford+T universal gate set. The T-gates shed light on the quantum resources required to deploy quantum models, either on an HPC system or several QC systems. In particular, if the T-gates cannot be simulated efficiently on an HPC system, we can apply a quantum computer and its computational power over conventional techniques. Our quantum resource estimation showed that quantum machine learning (QML) models, with a sufficient number of T-gates, provide the quantum advantage if and only if they generalize on unseen data points better than their classical counterparts deployed on the HPC system and they break the symmetry in their weights at each learning iteration like in conventional deep neural networks. We also estimated the quantum resources required for some QML models as an initial innovation. Lastly, we defined the optimal sharing between an HPC+QC system for executing QML models for hyperspectral satellite images. These are a unique dataset compared with other satellite images since they have a limited number of input quantum bits and a small number of labeled benchmark images, making them less challenging to deploy on quantum computers.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10339907","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10339907/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess some parameterized quantum circuit models transpiled into a Clifford+T universal gate set. The T-gates shed light on the quantum resources required to deploy quantum models, either on an HPC system or several QC systems. In particular, if the T-gates cannot be simulated efficiently on an HPC system, we can apply a quantum computer and its computational power over conventional techniques. Our quantum resource estimation showed that quantum machine learning (QML) models, with a sufficient number of T-gates, provide the quantum advantage if and only if they generalize on unseen data points better than their classical counterparts deployed on the HPC system and they break the symmetry in their weights at each learning iteration like in conventional deep neural networks. We also estimated the quantum resources required for some QML models as an initial innovation. Lastly, we defined the optimal sharing between an HPC+QC system for executing QML models for hyperspectral satellite images. These are a unique dataset compared with other satellite images since they have a limited number of input quantum bits and a small number of labeled benchmark images, making them less challenging to deploy on quantum computers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用量子优势进行卫星图像处理:回顾与评估
本文探讨了量子计算(QC)在地球观测和卫星图像中的应用现状。我们分析了量子学习模型在处理卫星数据时的潜在限制和应用,考虑了从量子优势中获利以及在高性能计算(HPC)和量子计算之间找到最佳共享方式等长期存在的挑战。然后,我们对一些参数化量子电路模型进行了评估,并将其移植到克利福德+T通用门集中。T门揭示了在一个高性能计算系统或多个QC系统上部署量子模型所需的量子资源。特别是,如果 T 门无法在 HPC 系统上高效模拟,我们可以应用量子计算机及其计算能力,而不是传统技术。我们的量子资源估算结果表明,如果量子机器学习(QML)模型具有足够数量的T-门,并且只有当它们在未见数据点上的泛化效果优于部署在高性能计算系统上的经典模型,并且它们在每次学习迭代时都能像传统深度神经网络一样打破权重的对称性时,它们才能提供量子优势。作为初步创新,我们还估算了一些 QML 模型所需的量子资源。最后,我们定义了 HPC+QC 系统之间的最佳共享方式,用于执行高光谱卫星图像的 QML 模型。与其他卫星图像相比,高光谱卫星图像是一个独特的数据集,因为它们的输入量子比特数量有限,标注的基准图像数量也较少,因此在量子计算机上部署它们的难度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
C3-VQA: Cryogenic Counter-Based Coprocessor for Variational Quantum Algorithms RSFQ All-Digital Programmable Multitone Generator for Quantum Applications IEEE Transactions on Quantum Engineering Publication Information Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures Dissipative Variational Quantum Algorithms for Gibbs State Preparation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1