{"title":"PoE-Enabled Visible Light Positioning Network With Low Bandwidth Requirement and High Precision Pulse Reconstruction","authors":"Zhenghai Wang;Xuan Huang;Xuanbang Chen;Mengzhen Xu;Xiaodong Liu;Yuhao Wang;Xun Zhang","doi":"10.1109/JISPIN.2023.3342732","DOIUrl":null,"url":null,"abstract":"The power over Ethernet (PoE)-enabled visible light positioning (VLP) networks as a promising technology can significantly enhance accuracy and cost-effectiveness of indoor positioning. However, both the limited bandwidth of the light-emitting diode (LED) and the low sampling rate of the receiver have a negative impact on the positioning performance. Moreover, time synchronization requirements between transmitters and between transceivers become more stringent in a resource-constrained VLP network. To address these issues, a PoE-enabled VLP scheme with low bandwidth requirement and high-precision pulse reconstruction is proposed in this article. Specifically, the precision time protocol and synchronous Ethernet are introduced to realize the synchronization transmission. Meanwhile, an \n<sc>on–off</small>\n keying (OOK) modulation-based beacon signal is designed to unlock both the transceivers' synchronization and bandwidth requirements. Then, a high-precision pulse reconstruction method considering the LED model and impulse response is established to enhance the signal quality. Moreover, the position is estimated based on the maximum a posteriori (MAP) probability criterion. Experimental results obtained by the VLP testbed demonstrate that the proposed scheme outperforms the benchmark positioning schemes. It achieves a positioning accuracy of 1.7 cm by using the reconstructed 2 GHz sampling rate in the case of a bandwidth of 50 MHz and a real sampling rate of 100 MHz. Last but not least, the proposed scheme maintains positioning accuracy within 30 cm even with a few MHz bandwidth of LED.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10356613","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10356613/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The power over Ethernet (PoE)-enabled visible light positioning (VLP) networks as a promising technology can significantly enhance accuracy and cost-effectiveness of indoor positioning. However, both the limited bandwidth of the light-emitting diode (LED) and the low sampling rate of the receiver have a negative impact on the positioning performance. Moreover, time synchronization requirements between transmitters and between transceivers become more stringent in a resource-constrained VLP network. To address these issues, a PoE-enabled VLP scheme with low bandwidth requirement and high-precision pulse reconstruction is proposed in this article. Specifically, the precision time protocol and synchronous Ethernet are introduced to realize the synchronization transmission. Meanwhile, an
on–off
keying (OOK) modulation-based beacon signal is designed to unlock both the transceivers' synchronization and bandwidth requirements. Then, a high-precision pulse reconstruction method considering the LED model and impulse response is established to enhance the signal quality. Moreover, the position is estimated based on the maximum a posteriori (MAP) probability criterion. Experimental results obtained by the VLP testbed demonstrate that the proposed scheme outperforms the benchmark positioning schemes. It achieves a positioning accuracy of 1.7 cm by using the reconstructed 2 GHz sampling rate in the case of a bandwidth of 50 MHz and a real sampling rate of 100 MHz. Last but not least, the proposed scheme maintains positioning accuracy within 30 cm even with a few MHz bandwidth of LED.