Pub Date : 2024-12-30DOI: 10.1109/JISPIN.2023.3348000
{"title":"IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information","authors":"","doi":"10.1109/JISPIN.2023.3348000","DOIUrl":"https://doi.org/10.1109/JISPIN.2023.3348000","url":null,"abstract":"","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817733","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1109/JISPIN.2024.3515573
Valérie Renaudin;Francesco Potortì
{"title":"Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN","authors":"Valérie Renaudin;Francesco Potortì","doi":"10.1109/JISPIN.2024.3515573","DOIUrl":"https://doi.org/10.1109/JISPIN.2024.3515573","url":null,"abstract":"","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"iii-iii"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1109/JISPIN.2024.3509803
Afsaneh Saeidanezhad;Wasim Ahmad;Muhammad A. Imran;Olaoluwa R. Popoola
In the rapidly advancing field of wireless localization, achieving accurate indoor tracking is crucial for the next generation of smart factories, automated workflows, and efficient supply chains. The integration of 5G networks within industrial environments offers high connectivity, yet challenges remain in obtaining the fine-grained positioning required for localization applications. This article presents the development and simulation-based evaluation of the sensor-guided non-line-of-sight (NLoS) corrective localization (SGNCL) algorithm within the 5G New Radio network framework. The proposed algorithm utilizes data integration techniques to effectively mitigate NLoS errors, which are prevalent in complex indoor environments with high delay spreads. We describe the algorithm's design, operational principles, and the comprehensive simulation setup used to assess its performance. In comparison to the minimum variance anchor set, which exhibited a mean error of 2.5 m, the SGNCL algorithm achieved a significant improvement, reducing the mean error to 0.86 m. The results also highlight the algorithm's ability to handle varying delay spreads and sensor densities, ensuring robust localization performance across different scenarios. These findings demonstrate the potential of the SGNCL algorithm to enhance 5G-enabled indoor localization services by addressing NLoS challenges through simulation-based insights.
{"title":"Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization","authors":"Afsaneh Saeidanezhad;Wasim Ahmad;Muhammad A. Imran;Olaoluwa R. Popoola","doi":"10.1109/JISPIN.2024.3509803","DOIUrl":"https://doi.org/10.1109/JISPIN.2024.3509803","url":null,"abstract":"In the rapidly advancing field of wireless localization, achieving accurate indoor tracking is crucial for the next generation of smart factories, automated workflows, and efficient supply chains. The integration of 5G networks within industrial environments offers high connectivity, yet challenges remain in obtaining the fine-grained positioning required for localization applications. This article presents the development and simulation-based evaluation of the sensor-guided non-line-of-sight (NLoS) corrective localization (SGNCL) algorithm within the 5G New Radio network framework. The proposed algorithm utilizes data integration techniques to effectively mitigate NLoS errors, which are prevalent in complex indoor environments with high delay spreads. We describe the algorithm's design, operational principles, and the comprehensive simulation setup used to assess its performance. In comparison to the minimum variance anchor set, which exhibited a mean error of 2.5 m, the SGNCL algorithm achieved a significant improvement, reducing the mean error to 0.86 m. The results also highlight the algorithm's ability to handle varying delay spreads and sensor densities, ensuring robust localization performance across different scenarios. These findings demonstrate the potential of the SGNCL algorithm to enhance 5G-enabled indoor localization services by addressing NLoS challenges through simulation-based insights.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"333-342"},"PeriodicalIF":0.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1109/JISPIN.2024.3509801
Shunsei Yamagishi;Lei Jing
The algorithms of the Kalman filters have been used in many papers on the Pedestrian Dead Reckoning (PDR) and attitude estimation for the attitude and heading reference system (AHRS). In this article, one type of the nonlinear Kalman filters, the Unscented Kalman filter (UKF) was researched to reduce computational cost, while maintaining accuracy. One of the issues of the attitude estimation algorithms is that computational cost is large, because of many matrix computations. The computational cost should be reduced for the application of the navigation system for general consumers toward developing low-priced navigation system. In this article, the novel UKF, named “Kaisoku Unscented Kalman Filter (KUKF)” is proposed. It was verified that the proposed KUKF reduced the computational cost about 13.426% comparing with the existing UKF, while almost maintaining accuracy.
{"title":"The Unscented Kalman Filter With Reduced Computation Time for Estimating the Attitude of the Attitude and Heading Reference System","authors":"Shunsei Yamagishi;Lei Jing","doi":"10.1109/JISPIN.2024.3509801","DOIUrl":"https://doi.org/10.1109/JISPIN.2024.3509801","url":null,"abstract":"The algorithms of the Kalman filters have been used in many papers on the Pedestrian Dead Reckoning (PDR) and attitude estimation for the attitude and heading reference system (AHRS). In this article, one type of the nonlinear Kalman filters, the Unscented Kalman filter (UKF) was researched to reduce computational cost, while maintaining accuracy. One of the issues of the attitude estimation algorithms is that computational cost is large, because of many matrix computations. The computational cost should be reduced for the application of the navigation system for general consumers toward developing low-priced navigation system. In this article, the novel UKF, named “Kaisoku Unscented Kalman Filter (KUKF)” is proposed. It was verified that the proposed KUKF reduced the computational cost about 13.426% comparing with the existing UKF, while almost maintaining accuracy.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"320-332"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For decades, high-accuracy localization has driven the interest of the research community. Recent cases include augmented reality (AR) and virtual reality (VR), indoor robotics, and drone applications, which have led to the emergence of subcentimeter localization requirements. This study introduces a new approach for high-accuracy localization by utilizing isochrons