Learning from Paradoxes

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Foundations of Physics Pub Date : 2024-01-03 DOI:10.1007/s10701-023-00733-7
Alessandro Bettini
{"title":"Learning from Paradoxes","authors":"Alessandro Bettini","doi":"10.1007/s10701-023-00733-7","DOIUrl":null,"url":null,"abstract":"<div><p>George Francis FitzGerald is well known to have proposed in 1889, three years before Lorentz, the (physical) contraction of bodies moving in the hypothetical ether, as an “explanation” the null result of the Michelson and Morley experiment. Less known is his proposal of an ether-drift experiment based on an electrostatic system. A simple charged condenser suspended by a wire would be subject to a torque due to the earth’s motion. The experiment was done by his pupil Trouton, with Noble, with null result. It was an important independent confirmation of the relativity principle, but it was substantially forgotten. It came back, under the form of a paradox, in the second half of the past century, usefully triggering an in-depth discussion on the electromagnetic energy and momentum flow in stationary systems, in which intuitively one thinks momentum should be zero, but it is not. The solution of the Trouton–Noble paradox, and similar ones, has led to a better understanding of the interplay between electromagnetic field and matter and to develop relevant examples for the university courses.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-023-00733-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00733-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

George Francis FitzGerald is well known to have proposed in 1889, three years before Lorentz, the (physical) contraction of bodies moving in the hypothetical ether, as an “explanation” the null result of the Michelson and Morley experiment. Less known is his proposal of an ether-drift experiment based on an electrostatic system. A simple charged condenser suspended by a wire would be subject to a torque due to the earth’s motion. The experiment was done by his pupil Trouton, with Noble, with null result. It was an important independent confirmation of the relativity principle, but it was substantially forgotten. It came back, under the form of a paradox, in the second half of the past century, usefully triggering an in-depth discussion on the electromagnetic energy and momentum flow in stationary systems, in which intuitively one thinks momentum should be zero, but it is not. The solution of the Trouton–Noble paradox, and similar ones, has led to a better understanding of the interplay between electromagnetic field and matter and to develop relevant examples for the university courses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从矛盾中学习
乔治-弗朗西斯-菲茨杰拉德(George Francis FitzGerald)是众所周知的,他在 1889 年,即洛伦茨之前三年,提出了在假想的以太中运动的物体的(物理)收缩,以此来 "解释 "迈克尔逊和莫利实验的无效结果。较少为人所知的是他提出的基于静电系统的以太漂移实验。用导线悬挂一个简单的带电冷凝器,会受到地球运动产生的力矩作用。他的学生特劳顿和诺贝尔一起完成了这个实验,结果是零。这是对相对论原理的一次重要的独立证实,但却被人们遗忘了。上世纪下半叶,它以悖论的形式再次出现,引发了人们对静止系统中电磁能和动量流的深入讨论,人们直觉上认为动量应该为零,但事实并非如此。对特鲁顿-诺贝尔悖论以及类似悖论的解决,使人们对电磁场与物质之间的相互作用有了更好的理解,并为大学课程提供了相关实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
期刊最新文献
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content The Determinacy Problem in Quantum Mechanics Complementary Detector and State Preparation Error and Classicality in the Spin-j Einstein–Podolsky–Rosen–Bohm Experiment Conservation Laws in Quantum Database Search Reply to Hofer-Szabó: The PBR Theorem hasn’t been Saved
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1