{"title":"Research on privacy and secure storage protection of personalized medical data based on hybrid encryption","authors":"Jialu Lv","doi":"10.1186/s13635-023-00150-3","DOIUrl":null,"url":null,"abstract":"Personalized medical data privacy and secure storage protection face serious challenges, especially in terms of data security and storage efficiency. Traditional encryption and storage solutions cannot meet the needs of modern medical data protection, which has led to an urgent need for new data protection strategies. Research personalized medical data privacy and secure storage protection based on hybrid encryption, in order to improve the security and efficiency of data storage. A hybrid encryption mechanism was proposed, which uses user attributes as keys for data encryption. The results show that the storage consumption of user attribute keys increases with the number of user attributes, but the consumption of hybrid encryption privacy storage technology is much smaller than that of traditional schemes. In the test, when the number of users increased to 30, the processing time first reached 1200 ms. During the increase in data volume, both test data and real data showed a brief decrease in attack frequency, but after the data volume reached 730–780, the attack frequency increased. It is worth noting that the performance of test data is better than that of real data. Personalized medical data privacy and secure storage protection based on hybrid encryption can not only effectively improve data security and reduce the risk of attack, but also greatly outperform traditional solutions in storage consumption and processing time. It has important practical significance for modern medical data storage protection.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"34 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-023-00150-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized medical data privacy and secure storage protection face serious challenges, especially in terms of data security and storage efficiency. Traditional encryption and storage solutions cannot meet the needs of modern medical data protection, which has led to an urgent need for new data protection strategies. Research personalized medical data privacy and secure storage protection based on hybrid encryption, in order to improve the security and efficiency of data storage. A hybrid encryption mechanism was proposed, which uses user attributes as keys for data encryption. The results show that the storage consumption of user attribute keys increases with the number of user attributes, but the consumption of hybrid encryption privacy storage technology is much smaller than that of traditional schemes. In the test, when the number of users increased to 30, the processing time first reached 1200 ms. During the increase in data volume, both test data and real data showed a brief decrease in attack frequency, but after the data volume reached 730–780, the attack frequency increased. It is worth noting that the performance of test data is better than that of real data. Personalized medical data privacy and secure storage protection based on hybrid encryption can not only effectively improve data security and reduce the risk of attack, but also greatly outperform traditional solutions in storage consumption and processing time. It has important practical significance for modern medical data storage protection.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy