Mohamed A. Taha, Mohamed M. K. Fadul, Joshua H. Tyler, Donald R. Reising, T. Daniel Loveless
{"title":"Enhancing internet of things security using entropy-informed RF-DNA fingerprint learning from Gabor-based images","authors":"Mohamed A. Taha, Mohamed M. K. Fadul, Joshua H. Tyler, Donald R. Reising, T. Daniel Loveless","doi":"10.1186/s13635-024-00175-2","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) deployments are anticipated to reach 29.42 billion by the end of 2030 at an average growth rate of 16% over the next 6 years. These deployments represent an overall growth of 201.4% in operational IoT devices from 2020 to 2030. This growth is alarming because IoT devices have permeated all aspects of our daily lives, and most lack adequate security. IoT-connected systems and infrastructures can be secured using device identification and authentication, two effective identity-based access control mechanisms. Physical Layer Security (PLS) is an alternative or augmentation to cryptographic and other higher-layer security schemes often used for device identification and authentication. PLS does not compromise spectral and energy efficiency or reduce throughput. Specific Emitter Identification (SEI) is a PLS scheme capable of uniquely identifying senders by passively learning emitter-specific features unintentionally imparted on the signals during their formation and transmission by the sender’s radio frequency (RF) front end. This work focuses on image-based SEI because it produces deep learning (DL) models that are less sensitive to external factors and better generalize to different operating conditions. More specifically, this work focuses on reducing the computational cost and memory requirements of image-based SEI with little to no reduction in performance by selecting the most informative portions of each image using entropy. These image portions or tiles reduce memory storage requirements by 92.8% and the DL training time by 81% while achieving an average percent correct classification performance of 91% and higher for SNR values of 15 dB and higher with individual emitter performance no lower than 87.7% at the same SNR. Compared with another state-of-the-art time-frequency (TF)-based SEI approach, our approach results in superior performance for all investigated signal-to-noise ratio conditions, the largest improvement being 21.7% at 9 dB and requires 43% less data.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"31 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-024-00175-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) deployments are anticipated to reach 29.42 billion by the end of 2030 at an average growth rate of 16% over the next 6 years. These deployments represent an overall growth of 201.4% in operational IoT devices from 2020 to 2030. This growth is alarming because IoT devices have permeated all aspects of our daily lives, and most lack adequate security. IoT-connected systems and infrastructures can be secured using device identification and authentication, two effective identity-based access control mechanisms. Physical Layer Security (PLS) is an alternative or augmentation to cryptographic and other higher-layer security schemes often used for device identification and authentication. PLS does not compromise spectral and energy efficiency or reduce throughput. Specific Emitter Identification (SEI) is a PLS scheme capable of uniquely identifying senders by passively learning emitter-specific features unintentionally imparted on the signals during their formation and transmission by the sender’s radio frequency (RF) front end. This work focuses on image-based SEI because it produces deep learning (DL) models that are less sensitive to external factors and better generalize to different operating conditions. More specifically, this work focuses on reducing the computational cost and memory requirements of image-based SEI with little to no reduction in performance by selecting the most informative portions of each image using entropy. These image portions or tiles reduce memory storage requirements by 92.8% and the DL training time by 81% while achieving an average percent correct classification performance of 91% and higher for SNR values of 15 dB and higher with individual emitter performance no lower than 87.7% at the same SNR. Compared with another state-of-the-art time-frequency (TF)-based SEI approach, our approach results in superior performance for all investigated signal-to-noise ratio conditions, the largest improvement being 21.7% at 9 dB and requires 43% less data.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy