{"title":"IoT devices and data availability optimization by ANN and KNN","authors":"Zhiqiang Chen, Zhihua Song, Tao Zhang, Yong Wei","doi":"10.1186/s13635-023-00145-0","DOIUrl":null,"url":null,"abstract":"Extensive research has been conducted to enhance the availability of IoT devices and data by focusing on the rapid prediction of instantaneous fault rates and temperatures. Temperature plays a crucial role in device availability as it significantly impacts equipment performance and lifespan. It serves as a vital indicator for predicting equipment failure and enables the improvement of availability and efficiency through effective temperature management. In the proposed optimization scheme for IoT device and data availability, the artificial neural network (ANN) algorithm and the K-Nearest Neighbours (KNN) algorithm are utilized to drive a neural network. The preliminary algorithm for availability optimization is chosen, and the target is divided into two parts: data optimization and equipment optimization. Suitable models are constructed for each part, and the KNN-driven neural network algorithm is employed to solve the proposed optimization model. The effectiveness of the proposed scheme is clearly demonstrated by the verification results. When compared to the benchmark method, the availability forward fault-tolerant method, and the heuristic optimization algorithm, the maximum temperature was successfully reduced to 2.0750 °C. Moreover, significant enhancements in the average availability of IoT devices were achieved, with improvements of 27.03%, 15.76%, and 10.85% respectively compared to the aforementioned methods. The instantaneous failure rates were 100%, 87.89%, and 84.4% respectively for the three algorithms. This optimization algorithm proves highly efficient in eliminating fault signals and optimizing the prediction of time-limited satisfaction. Furthermore, it exhibits strategic foresight in the decision-making process.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"15 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13635-023-00145-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research has been conducted to enhance the availability of IoT devices and data by focusing on the rapid prediction of instantaneous fault rates and temperatures. Temperature plays a crucial role in device availability as it significantly impacts equipment performance and lifespan. It serves as a vital indicator for predicting equipment failure and enables the improvement of availability and efficiency through effective temperature management. In the proposed optimization scheme for IoT device and data availability, the artificial neural network (ANN) algorithm and the K-Nearest Neighbours (KNN) algorithm are utilized to drive a neural network. The preliminary algorithm for availability optimization is chosen, and the target is divided into two parts: data optimization and equipment optimization. Suitable models are constructed for each part, and the KNN-driven neural network algorithm is employed to solve the proposed optimization model. The effectiveness of the proposed scheme is clearly demonstrated by the verification results. When compared to the benchmark method, the availability forward fault-tolerant method, and the heuristic optimization algorithm, the maximum temperature was successfully reduced to 2.0750 °C. Moreover, significant enhancements in the average availability of IoT devices were achieved, with improvements of 27.03%, 15.76%, and 10.85% respectively compared to the aforementioned methods. The instantaneous failure rates were 100%, 87.89%, and 84.4% respectively for the three algorithms. This optimization algorithm proves highly efficient in eliminating fault signals and optimizing the prediction of time-limited satisfaction. Furthermore, it exhibits strategic foresight in the decision-making process.
期刊介绍:
The overall goal of the EURASIP Journal on Information Security, sponsored by the European Association for Signal Processing (EURASIP), is to bring together researchers and practitioners dealing with the general field of information security, with a particular emphasis on the use of signal processing tools in adversarial environments. As such, it addresses all works whereby security is achieved through a combination of techniques from cryptography, computer security, machine learning and multimedia signal processing. Application domains lie, for example, in secure storage, retrieval and tracking of multimedia data, secure outsourcing of computations, forgery detection of multimedia data, or secure use of biometrics. The journal also welcomes survey papers that give the reader a gentle introduction to one of the topics covered as well as papers that report large-scale experimental evaluations of existing techniques. Pure cryptographic papers are outside the scope of the journal. Topics relevant to the journal include, but are not limited to: • Multimedia security primitives (such digital watermarking, perceptual hashing, multimedia authentictaion) • Steganography and Steganalysis • Fingerprinting and traitor tracing • Joint signal processing and encryption, signal processing in the encrypted domain, applied cryptography • Biometrics (fusion, multimodal biometrics, protocols, security issues) • Digital forensics • Multimedia signal processing approaches tailored towards adversarial environments • Machine learning in adversarial environments • Digital Rights Management • Network security (such as physical layer security, intrusion detection) • Hardware security, Physical Unclonable Functions • Privacy-Enhancing Technologies for multimedia data • Private data analysis, security in outsourced computations, cloud privacy