Beyond slow two-state protein conformational exchange using CEST: applications to three-state protein interconversion on the millisecond timescale.

IF 1.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular NMR Pub Date : 2024-03-01 Epub Date: 2024-01-03 DOI:10.1007/s10858-023-00431-6
Ved Prakash Tiwari, Debajyoti De, Nemika Thapliyal, Lewis E Kay, Pramodh Vallurupalli
{"title":"Beyond slow two-state protein conformational exchange using CEST: applications to three-state protein interconversion on the millisecond timescale.","authors":"Ved Prakash Tiwari, Debajyoti De, Nemika Thapliyal, Lewis E Kay, Pramodh Vallurupalli","doi":"10.1007/s10858-023-00431-6","DOIUrl":null,"url":null,"abstract":"<p><p>Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide <sup>15</sup>N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although <sup>15</sup>N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, <sup>15</sup>N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of <sup>15</sup>N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( <math><msub><mi>k</mi> <mrow><mi>e</mi> <mi>x</mi> <mo>,</mo> <mi>F</mi> <mi>I</mi> <mn>1</mn></mrow> </msub> </math> ~ 550 s<sup>-1</sup>, <math><msub><mi>k</mi> <mrow><mi>e</mi> <mi>x</mi> <mo>,</mo> <mi>F</mi> <mi>I</mi> <mn>2</mn></mrow> </msub> </math> ~ 1200 s<sup>-1</sup>, <math><msub><mi>k</mi> <mrow><mi>e</mi> <mi>x</mi> <mo>,</mo> <mi>I</mi> <mn>1</mn> <mi>I</mi> <mn>2</mn></mrow> </msub> </math> ~ 5000 s<sup>-1</sup>), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-023-00431-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide 15N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although 15N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, 15N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of 15N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( k e x , F I 1 ~ 550 s-1, k e x , F I 2 ~ 1200 s-1, k e x , I 1 I 2 ~ 5000 s-1), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CEST 超越缓慢的双态蛋白质构象交换:应用于毫秒级的三态蛋白质相互转换。
尽管核磁共振光谱被常规用于研究生物大分子的构象动态,但在交换比双态更复杂的情况下,例如当一个 "可见 "的主要构象与两个 "不可见 "的次要态在毫秒级的时间尺度上发生交换时,对数据的可靠分析就面临挑战。化学交换饱和转移(CEST)核磁共振实验最初是为了研究发生缓慢相互转换的系统而开发的,但它对中快时间尺度的生物分子构象交换也很敏感,这一点正变得越来越清楚。在这里,我们通过研究人 HYPA/FBP11 的 FF 结构域(WT FF)的折叠 (F) 状态与其两个折叠中间体 I1 和 I2 之间的相互转换,探讨了酰胺 15N CEST 实验在表征毫秒级蛋白质三态交换方面的用途。尽管 15N CPMG 实验与 F 状态在毫秒时间尺度上与单个次要状态相互转化一致,但 15N CEST 数据清楚地确定了 F 与一对次要状态之间的交换过程。对在单一温度下记录的 15N CEST 数据进行分析,无法得到一个独特的三态交换模型。然而,在对多个温度下记录的 CEST 数据进行简单的两态分析的基础上,将两个次态的化学位移差异的相对符号包括在内,就可以得到一个稳健的三态模型,其中 F、I1 和 I2 态在毫秒级([公式:见正文] ~ 550 s-1,[公式:见正文] ~ 1200 s-1,[公式:见正文] ~ 5000 s-1)上相互转换,I1 和 I2 态的稀疏程度分别为 ~ 0.在 15 °C 时,I1 和 I2 的稀疏度分别为 ~ 0.15% 和 ~ 0.35%。从 CEST 数据中提取最佳拟合交换参数不需要对交换参数空间进行计算要求极高的网格搜索。因此,CEST 实验的实用性远远超出了对核磁共振化学位移时间尺度上缓慢交换的构象的研究,还包括了相互转换速率达到数千/秒数量级的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomolecular NMR
Journal of Biomolecular NMR 生物-光谱学
CiteScore
6.00
自引率
3.70%
发文量
19
审稿时长
6-12 weeks
期刊介绍: The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include: Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR. New NMR techniques for studies of biological macromolecules. Novel approaches to computer-aided automated analysis of multidimensional NMR spectra. Computational methods for the structural interpretation of NMR data, including structure refinement. Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals. New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.
期刊最新文献
Pitfalls in measurements of R1 relaxation rates of protein backbone 15N nuclei. Towards cost-effective side-chain isotope labelling of proteins expressed in human cells. Optimising in-cell NMR acquisition for nucleic acids. Transverse relaxation optimized spectroscopy of NH2 groups in glutamine and asparagine side chains of proteins. Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1