Ting Liu, Yinjiao Li, Muqiu Xu, Hongjun Huang, Yan Luo
{"title":"PRMT2 silencing regulates macrophage polarization through activation of STAT1 or inhibition of STAT6.","authors":"Ting Liu, Yinjiao Li, Muqiu Xu, Hongjun Huang, Yan Luo","doi":"10.1186/s12865-023-00593-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Macrophages play significant roles in innate immune responses and are heterogeneous cells that can be polarized into M1 or M2 phenotypes. PRMT2 is one of the type I protein arginine methyltransferases involved in inflammation. However, the role of PRMT2 in M1/M2 macrophage polarization remains unclear. Our study revealed the effect and mechanism of PRMT2 in macrophage polarization.</p><p><strong>Methods: </strong>Bone marrow-derived macrophages (BMDMs) were polarized to M1 or M2 state by LPS plus murine recombinant interferon-γ (IFN-γ) or interleukin-4 (IL-4). Quantitative polymerase chain reaction (qPCR), western blot and flow cytometry (FCM) assay were performed and analyzed markers and signaling pathways of macrophage polarization.</p><p><strong>Results: </strong>We found that PRMT2 was obviously upregulated in LPS/IFN-γ-induced M1 macrophages, but it was little changed in IL-4-induced M2 macrophages. Furthermore, PRMT2 konckdown increased the expression of M1 macrophages markers through activation of STAT1 and decreased the expression of M2 macrophages markers through inhibition of STAT6.</p><p><strong>Conclusions: </strong>PRMT2 silencing modulates macrophage polarization by activating STAT1 to promote M1 and inhibiting STAT6 to attenuate the M2 state.</p>","PeriodicalId":9040,"journal":{"name":"BMC Immunology","volume":"25 1","pages":"1"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12865-023-00593-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Macrophages play significant roles in innate immune responses and are heterogeneous cells that can be polarized into M1 or M2 phenotypes. PRMT2 is one of the type I protein arginine methyltransferases involved in inflammation. However, the role of PRMT2 in M1/M2 macrophage polarization remains unclear. Our study revealed the effect and mechanism of PRMT2 in macrophage polarization.
Methods: Bone marrow-derived macrophages (BMDMs) were polarized to M1 or M2 state by LPS plus murine recombinant interferon-γ (IFN-γ) or interleukin-4 (IL-4). Quantitative polymerase chain reaction (qPCR), western blot and flow cytometry (FCM) assay were performed and analyzed markers and signaling pathways of macrophage polarization.
Results: We found that PRMT2 was obviously upregulated in LPS/IFN-γ-induced M1 macrophages, but it was little changed in IL-4-induced M2 macrophages. Furthermore, PRMT2 konckdown increased the expression of M1 macrophages markers through activation of STAT1 and decreased the expression of M2 macrophages markers through inhibition of STAT6.
Conclusions: PRMT2 silencing modulates macrophage polarization by activating STAT1 to promote M1 and inhibiting STAT6 to attenuate the M2 state.
期刊介绍:
BMC Immunology is an open access journal publishing original peer-reviewed research articles in molecular, cellular, tissue-level, organismal, functional, and developmental aspects of the immune system as well as clinical studies and animal models of human diseases.