Repairing Effect of Mesenchymal Stem Cells on Lead Acetate-Induced Testicular Injury in Mice.

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING Cell Transplantation Pub Date : 2024-01-01 DOI:10.1177/09636897231219395
Shasha Zhao, Zhaozhi Li, Kun Li, Xiaoyu Dai, Zhe Xu, Li Li, Huanhuan Wang, Xiaodun Liu, Dong Li
{"title":"Repairing Effect of Mesenchymal Stem Cells on Lead Acetate-Induced Testicular Injury in Mice.","authors":"Shasha Zhao, Zhaozhi Li, Kun Li, Xiaoyu Dai, Zhe Xu, Li Li, Huanhuan Wang, Xiaodun Liu, Dong Li","doi":"10.1177/09636897231219395","DOIUrl":null,"url":null,"abstract":"<p><p>Lead acetate can cause testicular damage in males. In this study, we assessed the repairing effects of human umbilical cord mesenchymal stem cells (MSCs) on testicular injury caused by lead acetate in mice. MSCs were injected into mice with testicular injury by intraperitoneal injection, and the organ coefficient of reproductive organs, sperm motility, hormone level and antioxidant index of mice were tested. Compared with the normal group, the coefficient of reproductive organs and sperm motility were reduced in the model group, and histopathology showed obvious testicular injury, proving successful modeling. Compared with the model group, the reproductive organ coefficient and sperm motility were improved in the experimental group, and histopathology showed that the testicular injury could be significantly improved. Sex hormone secretion tends to be normal, and the antioxidant index increased. Sequencing results showed that there were 485 upregulated genes and 172 downregulated genes between the model group and the control group, and 210 upregulated genes and 482 downregulated genes between the experimental group and the model group. Differentially expressed genes are mainly concentrated in AMP-activated protein kinase (AMPK) signaling pathway, apoptosis signaling pathway, and arginine biosynthesis signaling pathway. Overall, MSCs can significantly improve the degree of damages to mice testis caused by lead acetate and have a certain repairing effect.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"33 ","pages":"9636897231219395"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897231219395","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Lead acetate can cause testicular damage in males. In this study, we assessed the repairing effects of human umbilical cord mesenchymal stem cells (MSCs) on testicular injury caused by lead acetate in mice. MSCs were injected into mice with testicular injury by intraperitoneal injection, and the organ coefficient of reproductive organs, sperm motility, hormone level and antioxidant index of mice were tested. Compared with the normal group, the coefficient of reproductive organs and sperm motility were reduced in the model group, and histopathology showed obvious testicular injury, proving successful modeling. Compared with the model group, the reproductive organ coefficient and sperm motility were improved in the experimental group, and histopathology showed that the testicular injury could be significantly improved. Sex hormone secretion tends to be normal, and the antioxidant index increased. Sequencing results showed that there were 485 upregulated genes and 172 downregulated genes between the model group and the control group, and 210 upregulated genes and 482 downregulated genes between the experimental group and the model group. Differentially expressed genes are mainly concentrated in AMP-activated protein kinase (AMPK) signaling pathway, apoptosis signaling pathway, and arginine biosynthesis signaling pathway. Overall, MSCs can significantly improve the degree of damages to mice testis caused by lead acetate and have a certain repairing effect.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质干细胞对醋酸铅诱发的小鼠睾丸损伤的修复作用
醋酸铅可导致男性睾丸损伤。本研究评估了人脐带间充质干细胞(MSCs)对醋酸铅引起的小鼠睾丸损伤的修复作用。将间充质干细胞腹腔注射到睾丸损伤的小鼠体内,检测小鼠生殖器官系数、精子活力、激素水平和抗氧化指数。与正常组相比,模型组的生殖器官系数和精子活力降低,组织病理学显示睾丸损伤明显,证明造模成功。与模型组相比,实验组的生殖器官系数和精子活力均有所提高,组织病理学显示睾丸损伤得到明显改善。性激素分泌趋于正常,抗氧化指数上升。测序结果显示,模型组和对照组之间有 485 个上调基因和 172 个下调基因,实验组和模型组之间有 210 个上调基因和 482 个下调基因。差异表达基因主要集中在AMPK信号通路、细胞凋亡信号通路和精氨酸生物合成信号通路。总之,间充质干细胞能明显改善醋酸铅对小鼠睾丸的损伤程度,并具有一定的修复作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
期刊最新文献
ASNTR 2024 Abstracts Role of Hedgehog Signaling Pathways in Multipotent Mesenchymal Stem Cells Differentiation Hematopoietic Stem Cell Transplantation in Sickle Cell Disease: A Multidimentional Review Alpha-1 Antitrypsin Augmentation Therapy in Chronic Pancreatitis Patients Undergoing Total Pancreatectomy and Islet Autotransplantation: A Randomized, Controlled Study Persistent Cytopenia After CD19 CAR T Therapy in Relapsed/Refractory DLBCL Patients Could Be a Predictor of Efficacy and Side Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1