Richard Malley, Ying-Jie Lu, Shite Sebastian, Fan Zhang, David O Willer
{"title":"Multiple antigen presenting system (MAPS): state of the art and potential applications.","authors":"Richard Malley, Ying-Jie Lu, Shite Sebastian, Fan Zhang, David O Willer","doi":"10.1080/14760584.2023.2299384","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components.</p><p><strong>Areas covered: </strong>This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings.</p><p><strong>Expert opinion: </strong>The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.</p>","PeriodicalId":12326,"journal":{"name":"Expert Review of Vaccines","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14760584.2023.2299384","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components.
Areas covered: This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings.
Expert opinion: The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.
期刊介绍:
Expert Review of Vaccines (ISSN 1476-0584) provides expert commentary on the development, application, and clinical effectiveness of new vaccines. Coverage includes vaccine technology, vaccine adjuvants, prophylactic vaccines, therapeutic vaccines, AIDS vaccines and vaccines for defence against bioterrorism. All articles are subject to rigorous peer-review.
The vaccine field has been transformed by recent technological advances, but there remain many challenges in the delivery of cost-effective, safe vaccines. Expert Review of Vaccines facilitates decision making to drive forward this exciting field.