Multiple antigen presenting system (MAPS): state of the art and potential applications.

IF 5.5 3区 医学 Q1 IMMUNOLOGY Expert Review of Vaccines Pub Date : 2024-01-01 Epub Date: 2024-01-08 DOI:10.1080/14760584.2023.2299384
Richard Malley, Ying-Jie Lu, Shite Sebastian, Fan Zhang, David O Willer
{"title":"Multiple antigen presenting system (MAPS): state of the art and potential applications.","authors":"Richard Malley, Ying-Jie Lu, Shite Sebastian, Fan Zhang, David O Willer","doi":"10.1080/14760584.2023.2299384","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components.</p><p><strong>Areas covered: </strong>This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings.</p><p><strong>Expert opinion: </strong>The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.</p>","PeriodicalId":12326,"journal":{"name":"Expert Review of Vaccines","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14760584.2023.2299384","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components.

Areas covered: This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings.

Expert opinion: The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重抗原递呈系统(MAPS):最新技术和潜在应用。
导言:技术创新在推动疫苗设计和保护作用方面发挥了重要作用。安全性、耐受性和效力/有效性方面的改进大大降低了疫苗可预防的全球性疾病的发病率和死亡率。在此,我们介绍一种独创的疫苗平台--多抗原呈递系统(MAPS),它依赖于生物素化多糖(PS)与融合了根瘤菌素的病原体特异性蛋白之间的高亲和力相互作用。MAPS 允许灵活组合各种 PS 和蛋白质成分:本综述概述了 MAPS 的基本原理,并介绍了其在非临床和临床环境中用于设计针对细菌和病毒病原体的疫苗的应用:专家观点:MAPS利用高亲和力的非共价生物素-水苏碱相互作用,可在单一疫苗中结合多种PS和疾病特异性蛋白抗原。模块化设计可简化疫苗成分的交换。已发表的研究表明,MAPS 技术可支持更高的免疫原性广度(覆盖更多血清型,诱导 B 细胞和 T 细胞反应),超过 PS 疫苗或基于蛋白质的结合疫苗所能激发的免疫原性广度。重要的是,需要对基于 MAPS 的候选疫苗进行更详细的特征描述,尤其是在临床研究中。预计基于 MAPS 的疫苗可适用于多种具有全球公共卫生重要性的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Review of Vaccines
Expert Review of Vaccines 医学-免疫学
CiteScore
9.10
自引率
3.20%
发文量
136
审稿时长
4-8 weeks
期刊介绍: Expert Review of Vaccines (ISSN 1476-0584) provides expert commentary on the development, application, and clinical effectiveness of new vaccines. Coverage includes vaccine technology, vaccine adjuvants, prophylactic vaccines, therapeutic vaccines, AIDS vaccines and vaccines for defence against bioterrorism. All articles are subject to rigorous peer-review. The vaccine field has been transformed by recent technological advances, but there remain many challenges in the delivery of cost-effective, safe vaccines. Expert Review of Vaccines facilitates decision making to drive forward this exciting field.
期刊最新文献
Hookworm vaccines: current and future directions. A descriptive review on the real-world impact of Moderna, inc. COVID-19 vaccines. Estimating the time required to reach HPV vaccination targets across Europe. Vaccination strategies for patients under monoclonal antibody and other biological treatments: an updated comprehensive review based on EMA authorizations to January 2024. Comparison of preclinical efficacy of immunotherapies against HPV-induced cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1