Spectroscopic, computational, cytotoxicity, and docking studies of 6-bromobenzimidazole as anti-breast cancer agent

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Recognition Pub Date : 2024-01-03 DOI:10.1002/jmr.3074
V. S. Kunjumol, S. Jeyavijayan, S. Sumathi, N. Karthik
{"title":"Spectroscopic, computational, cytotoxicity, and docking studies of 6-bromobenzimidazole as anti-breast cancer agent","authors":"V. S. Kunjumol,&nbsp;S. Jeyavijayan,&nbsp;S. Sumathi,&nbsp;N. Karthik","doi":"10.1002/jmr.3074","DOIUrl":null,"url":null,"abstract":"<p>6-Bromobenzimidazole (6BBZ) has been calculated in this study utilizing the 6-311++G(d,p) basis set and the Becke-3-Lee-Yang-Parr density functional approaches. The basic frequencies and geometric optimization are known. FTIR, FT-Raman, and UV–Vis spectra of the substance are compared between its computed and observed values. The energy gap between highest occupied molecular orbital–lowest unoccupied molecular orbital and molecule electrostatic potentials has been represented by charge density distributions that may be associated with the biological response. Time-dependent density functional theory calculations in the gas phase and dimethyl sulfoxide were carried out to ascertain the electronic properties and energy gap values using the same basis set. Molecular orbital contributions are investigated using the overlap population, partial, and total densities of states. Natural bond analysis was found to have strong electron delocalization by means of π(C4–C9) → π*(C5–C6), LP (N1) → π*(C7–C8), and LP(Br12) → π*(C5–C6) interactions. The Fukui function and Mulliken analysis have been explored on the atomic charges of the molecule. The nuclear magnetic resonance chemical shifts for <sup>1</sup>H and <sup>13</sup>C have been computed using the gauge-independent atomic orbital technique. With the highest binding affinity (−6.2 kcal mol<sup>−1</sup>) against estrogen sulfotransferase receptor (PDB ID: 1AQU) and low IC<sub>50</sub> value of 17.23 μg/mL, 6BBZ demonstrated potent action against the MCF-7 breast cancer cell line. Studies on the antibacterial activity and ADMET prediction of the molecule have also been carried out.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3074","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

6-Bromobenzimidazole (6BBZ) has been calculated in this study utilizing the 6-311++G(d,p) basis set and the Becke-3-Lee-Yang-Parr density functional approaches. The basic frequencies and geometric optimization are known. FTIR, FT-Raman, and UV–Vis spectra of the substance are compared between its computed and observed values. The energy gap between highest occupied molecular orbital–lowest unoccupied molecular orbital and molecule electrostatic potentials has been represented by charge density distributions that may be associated with the biological response. Time-dependent density functional theory calculations in the gas phase and dimethyl sulfoxide were carried out to ascertain the electronic properties and energy gap values using the same basis set. Molecular orbital contributions are investigated using the overlap population, partial, and total densities of states. Natural bond analysis was found to have strong electron delocalization by means of π(C4–C9) → π*(C5–C6), LP (N1) → π*(C7–C8), and LP(Br12) → π*(C5–C6) interactions. The Fukui function and Mulliken analysis have been explored on the atomic charges of the molecule. The nuclear magnetic resonance chemical shifts for 1H and 13C have been computed using the gauge-independent atomic orbital technique. With the highest binding affinity (−6.2 kcal mol−1) against estrogen sulfotransferase receptor (PDB ID: 1AQU) and low IC50 value of 17.23 μg/mL, 6BBZ demonstrated potent action against the MCF-7 breast cancer cell line. Studies on the antibacterial activity and ADMET prediction of the molecule have also been carried out.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为抗乳腺癌药物的 6-溴苯并咪唑的光谱、计算、细胞毒性和对接研究。
本研究利用 6-311++G(d,p) 基集和 Becke-3-Lee-Yang-Parr 密度泛函方法计算了 6-溴苯并咪唑 (6BBZ)。已知基本频率和几何优化。该物质的傅立叶变换红外光谱、傅立叶变换拉曼光谱和紫外可见光谱的计算值与观测值进行了比较。最高占位分子轨道-最低未占位分子轨道和分子静电位之间的能量差距已通过可能与生物反应相关的电荷密度分布表现出来。在气相和二甲基亚砜中进行了随时间变化的密度泛函理论计算,以使用相同的基集确定电子特性和能隙值。使用重叠群体、部分和总状态密度研究了分子轨道的贡献。通过π(C4-C9) → π*(C5-C6)、LP (N1) → π*(C7-C8)和 LP(Br12) → π*(C5-C6)相互作用,发现自然键分析具有很强的电子析出。对分子的原子电荷进行了 Fukui 函数和 Mulliken 分析。利用量规无关原子轨道技术计算了 1 H 和 13 C 的核磁共振化学位移。6BBZ 与雌激素磺基转移酶受体(PDB ID:1AQU)的结合亲和力最高(-6.2 kcal mol-1),IC50 值较低,为 17.23 μg/mL,对 MCF-7 乳腺癌细胞株具有强效作用。此外,还对该分子的抗菌活性和 ADMET 预测进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
期刊最新文献
Probing the Molecular Basis of Aminoacyl-Adenylate Affinity With Mycobacterium tuberculosis Leucyl-tRNA Synthetase Employing Molecular Dynamics, Umbrella Sampling Simulations and Site-Directed Mutagenesis. Issue Information Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149. Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods. Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1