Coronary microvascular dysfunction as assessed by multimodal diagnostic imaging in patients with hypertrophic cardiomyopathy is related to the severity of cardiac dysfunction
{"title":"Coronary microvascular dysfunction as assessed by multimodal diagnostic imaging in patients with hypertrophic cardiomyopathy is related to the severity of cardiac dysfunction","authors":"Tien Vuong Tran, Loic Djaileb, Laurent Riou, Lea Ruez Lantuejoul, Joris Giai, Gilles Barone-Rochette","doi":"10.1111/micc.12843","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Coronary microvascular dysfunction (CMD) plays a major role in hypertrophic cardiomyopathy (HCM) physiopathology but its assessment in clinical practice remains a challenge. Nowadays, innovations in invasive and noninvasive coronary evaluation using multimodal imaging provide options for the diagnosis of CMD. The objective of the present study was to investigate if new multimodal imaging diagnosis of CMD could detect HCM patients with more impaired cardiac function by left atrioventricular coupling index (LACI).</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>A total of 32 consecutive patients with a confirmed diagnosis of HCM (62 ± 13 years, 62% men) were prospectively screened for CMD using a multimodal imaging method. LACI was assessed by cardiovascular magnetic resonance imaging. Fifteen (47%) patients had CMD by multimodal imaging method. Patients with CMD presented a significantly higher LACI (48.5 ± 25.4 vs. 32.5 ± 10.6, <i>p</i> = .03). A multivariate logistic regression analysis demonstrated that CMD was independently associated with LACI (OR = 1.069, 95% CI 1.00–1.135, <i>p</i> = .03).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Multimodal imaging diagnosis of CMD is applicable to HCM patients and is associated with more impaired cardiac function.</p>\n </section>\n </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"31 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12843","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Coronary microvascular dysfunction (CMD) plays a major role in hypertrophic cardiomyopathy (HCM) physiopathology but its assessment in clinical practice remains a challenge. Nowadays, innovations in invasive and noninvasive coronary evaluation using multimodal imaging provide options for the diagnosis of CMD. The objective of the present study was to investigate if new multimodal imaging diagnosis of CMD could detect HCM patients with more impaired cardiac function by left atrioventricular coupling index (LACI).
Methods and Results
A total of 32 consecutive patients with a confirmed diagnosis of HCM (62 ± 13 years, 62% men) were prospectively screened for CMD using a multimodal imaging method. LACI was assessed by cardiovascular magnetic resonance imaging. Fifteen (47%) patients had CMD by multimodal imaging method. Patients with CMD presented a significantly higher LACI (48.5 ± 25.4 vs. 32.5 ± 10.6, p = .03). A multivariate logistic regression analysis demonstrated that CMD was independently associated with LACI (OR = 1.069, 95% CI 1.00–1.135, p = .03).
Conclusion
Multimodal imaging diagnosis of CMD is applicable to HCM patients and is associated with more impaired cardiac function.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.