Jingze Yu, Anning Zhu, Miaoxin Liu, Jiyuan Dong, Rentong Chen, Tian Tian, Tong Liu, Li Ma, Ye Ruan
{"title":"Association Between Air Pollution and Cardiovascular Disease Hospitalizations in Lanzhou City, 2013–2020: A Time Series Analysis","authors":"Jingze Yu, Anning Zhu, Miaoxin Liu, Jiyuan Dong, Rentong Chen, Tian Tian, Tong Liu, Li Ma, Ye Ruan","doi":"10.1029/2022GH000780","DOIUrl":null,"url":null,"abstract":"<p>Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM<sub>2.5</sub>, NO<sub>2</sub>, and CO have the strongest harmful effects at lag03, while SO<sub>2</sub> at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM<sub>2.5</sub>, SO<sub>2</sub>, and NO<sub>2</sub> concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m<sup>3</sup> increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O<sub>3</sub> for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO<sub>2</sub> and CO pose a greater risk of hospitalization for women, while PM<sub>2.5</sub> and SO<sub>2</sub> have a greater impact on men. PM<sub>2.5</sub>, NO<sub>2</sub>, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO<sub>2</sub> affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022GH000780","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.